cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336375 Numbers k such that gcd(k, prime(k) + prime(k+2)) > 1.

This page as a plain text file.
%I A336375 #8 Apr 21 2021 03:47:41
%S A336375 2,4,6,8,9,10,12,14,16,18,20,21,22,24,25,26,28,30,32,33,34,36,38,40,
%T A336375 42,44,45,46,48,50,51,52,54,56,57,58,60,62,64,66,68,70,72,74,75,76,78,
%U A336375 80,82,84,86,88,90,92,94,96,98,100,102,104,105,106,108,110
%N A336375 Numbers k such that gcd(k, prime(k) + prime(k+2)) > 1.
%C A336375 This sequence and A336374 partition the positive integers.
%e A336375 In the following table, p(k) = A000040(k) = prime(k).
%e A336375   k    p(k)   p(k)+p(k+2)   gcd
%e A336375   1     2         7          1
%e A336375   2     3        10          2
%e A336375   3     5        16          1
%e A336375   4     7        20          4
%e A336375   5    11        28          1
%e A336375   6    13        32          2
%e A336375 1 and 3 are in A336374; 2 and 4 are in this sequence; 2 and 5 are in A336376; 3 and 7 are in A336377.
%t A336375 p[n_] := Prime[n];
%t A336375 u = Select[Range[200], GCD[#, p[#] + p[# + 2]] == 1 &]  (* A336374 *)
%t A336375 v = Select[Range[200], GCD[#, p[#] + p[# + 2]] > 1 &]   (* A336375 *)
%t A336375 Prime[u]  (* A336376 *)
%t A336375 Prime[v]  (* A336377 *)
%Y A336375 Cf. A000040, A336366, A336374, A336376, A336377.
%K A336375 nonn
%O A336375 1,1
%A A336375 _Clark Kimberling_, Oct 06 2020