cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336377 Primes p(n) such that gcd(n, prime(n)+prime(n+2)) > 1.

This page as a plain text file.
%I A336377 #4 Oct 18 2020 22:36:33
%S A336377 3,7,13,19,23,29,37,43,53,61,71,73,79,89,97,101,107,113,131,137,139,
%T A336377 151,163,173,181,193,197,199,223,229,233,239,251,263,269,271,281,293,
%U A336377 311,317,337,349,359,373,379,383,397,409,421,433,443,457,463,479,491
%N A336377 Primes p(n) such that gcd(n, prime(n)+prime(n+2)) > 1.
%C A336377 This sequence and A336376 partition the set of primes.
%e A336377 In the following table, p(n) = A000040(n) = prime(n).
%e A336377   n    p(n)   p(n)+p(n+2)   gcd
%e A336377   1     2         7          1
%e A336377   2     3        10          2
%e A336377   3     5        16          1
%e A336377   4     7        20          4
%e A336377   5    11        28          1
%e A336377   6    13        32          2
%e A336377 1 and 3 are in A336374; 2 and 4 are in A336375; 2 and 5 are in A336376; 3 and 7 are in A336377.
%t A336377 p[n_] := Prime[n];
%t A336377 u = Select[Range[200], GCD[#, p[#] + p[# + 2]] == 1 &]  (* A336374 *)
%t A336377 v = Select[Range[200], GCD[#, p[#] + p[# + 2]] > 1 &]   (* A336375 *)
%t A336377 Prime[u]  (* A336376 *)
%t A336377 Prime[v]  (* A336377 *)
%Y A336377 Cf. A000040, A336366, A336374, A336375, A336376.
%K A336377 nonn
%O A336377 1,1
%A A336377 _Clark Kimberling_, Oct 06 2020