cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336378 Numbers k such that gcd(k, prime(k-1) + prime(k+1)) = 1.

This page as a plain text file.
%I A336378 #15 Jul 16 2023 17:25:50
%S A336378 2,3,7,13,17,19,23,27,29,31,37,41,43,45,47,49,53,55,59,61,63,65,67,69,
%T A336378 71,73,77,79,81,83,85,89,91,93,95,97,101,103,107,109,111,113,117,119,
%U A336378 121,125,127,131,133,135,137,139,141,143,145,147,149,151,157
%N A336378 Numbers k such that gcd(k, prime(k-1) + prime(k+1)) = 1.
%e A336378 In the following table, p(k) = A000040(k) = prime(k).
%e A336378   k    p(k)   p(k-1)+p(k+1)   gcd
%e A336378   2     3          7           1
%e A336378   3     5         10           1
%e A336378   4     7         16           4
%e A336378   5    11         20           5
%e A336378   6    13         28           2
%e A336378 2 and 3 are in this sequence; 4 and 5 are in A336379; 3 and 5 are in A336380; 7 and 11 are in A336381.
%t A336378 p[n_] := Prime[n];
%t A336378 u = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] == 1 &]  (* A336378 *)
%t A336378 v = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] > 1 &]   (* A336379 *)
%t A336378 Prime[u]  (* A336380 *)
%t A336378 Prime[v]  (* A336381 *)
%Y A336378 Cf. A000040, A336366, A336379, A336380, A336381.
%K A336378 nonn
%O A336378 1,1
%A A336378 _Clark Kimberling_, Oct 06 2020
%E A336378 Offset corrected by _Mohammed Yaseen_, Jul 16 2023