cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336379 Numbers k such that gcd(k, prime(k-1) + prime(k+1)) > 1.

This page as a plain text file.
%I A336379 #16 Jul 17 2023 01:04:49
%S A336379 4,5,6,8,9,10,11,12,14,15,16,18,20,21,22,24,25,26,28,30,32,33,34,35,
%T A336379 36,38,39,40,42,44,46,48,50,51,52,54,56,57,58,60,62,64,66,68,70,72,74,
%U A336379 75,76,78,80,82,84,86,87,88,90,92,94,96,98,99,100,102,104
%N A336379 Numbers k such that gcd(k, prime(k-1) + prime(k+1)) > 1.
%e A336379 In the following table, p(k) = A000040(k) = prime(k).
%e A336379   k    p(k)   p(k-1)+p(k+1)   gcd
%e A336379   2     3          7           1
%e A336379   3     5         10           1
%e A336379   4     7         16           4
%e A336379   5    11         20           5
%e A336379   6    13         28           2
%e A336379 2 and 3 are in A336378; 4 and 5 are in this sequence; 3 and 5 are in A336380; 7 and 11 are in A336381.
%t A336379 p[n_] := Prime[n];
%t A336379 u = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] == 1 &]  (* A336378 *)
%t A336379 v = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] > 1 &]   (* this sequence *)
%t A336379 Prime[u]  (* A336380 *)
%t A336379 Prime[v]  (* A336381 *)
%Y A336379 Cf. A000040, A336366, A336378, A336380, A336381.
%K A336379 nonn
%O A336379 1,1
%A A336379 _Clark Kimberling_, Oct 06 2020
%E A336379 Offset corrected by _Mohammed Yaseen_, Jul 16 2023