cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336380 Primes p(k) such that gcd(k, prime(k-1)+prime(k+1)) = 1.

This page as a plain text file.
%I A336380 #11 Jul 17 2023 01:16:10
%S A336380 3,5,17,41,59,67,83,103,109,127,157,179,191,197,211,227,241,257,277,
%T A336380 283,307,313,331,347,353,367,389,401,419,431,439,461,467,487,499,509,
%U A336380 547,563,587,599,607,617,643,653,661,691,709,739,751,761,773,797,811
%N A336380 Primes p(k) such that gcd(k, prime(k-1)+prime(k+1)) = 1.
%e A336380 In the following table, p(n) = A000040(n) = prime(n).
%e A336380   n    p(n)   p(n-1)+p(n+1)   gcd
%e A336380   2     3          7           1
%e A336380   3     5         10           1
%e A336380   4     7         16           4
%e A336380   5    11         20           5
%e A336380   6    13         28           2
%e A336380 2 and 3 are in A336378; 4 and 5 are in A336379; 3 and 5 are in this sequence; 7 and 11 are in A336381.
%t A336380 p[n_] := Prime[n];
%t A336380 u = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] == 1 &]  (* A336378 *)
%t A336380 v = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] > 1 &]   (* A336379 *)
%t A336380 Prime[u]  (* this sequence *)
%t A336380 Prime[v]  (* A336381 *)
%Y A336380 Cf. A000040, A336366, A336378, A336379, A336381.
%K A336380 nonn
%O A336380 1,1
%A A336380 _Clark Kimberling_, Oct 25 2020
%E A336380 Offset corrected by _Mohammed Yaseen_, Jul 17 2023