This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336381 #16 Dec 07 2022 12:27:15 %S A336381 7,11,13,19,23,29,31,37,43,47,53,61,71,73,79,89,97,101,107,113,131, %T A336381 137,139,149,151,163,167,173,181,193,199,223,229,233,239,251,263,269, %U A336381 271,281,293,311,317,337,349,359,373,379,383,397,409,421,433,443,449 %N A336381 Primes p(n) such that gcd(n, prime(n-1)+prime(n+1)) > 1. %H A336381 Robert Israel, <a href="/A336381/b336381.txt">Table of n, a(n) for n = 1..10000</a> %e A336381 In the following table, P(n) = A000040(n) = prime(n). %e A336381 n P(n) P(n-1)+P(n+1) gcd %e A336381 2 3 7 1 %e A336381 3 5 10 1 %e A336381 4 7 16 4 %e A336381 5 11 20 5 %e A336381 6 13 28 2 %e A336381 2 and 3 are in A336378; 4 and 5 are in A336379; 3 and 5 are in A336380; 7 and 11 are in A336381. %p A336381 q:= 2: r:= 3: %p A336381 R:= NULL: count:= 0: %p A336381 for n from 2 while count < 100 do %p A336381 p:= q; q:= r; r:= nextprime(r); %p A336381 if igcd(n,p+r) > 1 then count:= count+1; R:= R, q; fi %p A336381 od: %p A336381 R; # _Robert Israel_, Dec 08 2020 %t A336381 p[n_] := Prime[n]; %t A336381 u = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] == 1 &] (* A336378 *) %t A336381 v = Select[Range[2, 200], GCD[#, p[# - 1] + p[# + 1]] > 1 &] (* A336379 *) %t A336381 Prime[u] (* A336380 *) %t A336381 Prime[v] (* A336381 *) %t A336381 Select[Partition[Prime[Range[100]],3,1],GCD[PrimePi[#[[2]]],#[[1]]+#[[3]]]>1&][[All,2]] (* _Harvey P. Dale_, Dec 07 2022 *) %o A336381 (PARI) for(n=2,200,if(gcd(n,prime(n-1)+prime(n+1))>1,print1(prime(n),", "))) \\ _Derek Orr_, Nov 23 2020 %Y A336381 Cf. A000040, A048448, A336366, A336378, A336379, A336380. %K A336381 nonn %O A336381 1,1 %A A336381 _Clark Kimberling_, Oct 25 2020 %E A336381 Offset changed by _Robert Israel_, Dec 08 2020