This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336387 #8 Jan 15 2022 13:59:38 %S A336387 0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,0,1,1,1,0,1,1,1,1,1,1, %T A336387 2,2,1,1,2,0,1,1,1,1,1,1,1,1,1,2,1,1,1,0,2,1,2,1,1,1,1,1,2,1,2,1,1,1, %U A336387 1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,0,1,2,1,2,1,1,1,1,2 %N A336387 Number of prime divisors of n that do not divide sigma(n); a(1) = 0. %H A336387 Antti Karttunen, <a href="/A336387/b336387.txt">Table of n, a(n) for n = 1..65537</a> %H A336387 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A336387 a(n) = Sum_{p over distinct primes dividing n} [sigma(n) != 0 mod p]. %t A336387 Table[Length[Select[FactorInteger[n][[All,1]],Mod[DivisorSigma[ 1,n],#]!= 0&]],{n,110}] (* _Harvey P. Dale_, Jan 15 2022 *) %o A336387 (PARI) A336387(n) = if(1==n,0,my(s=sigma(n)); #select(p -> (s%p), factor(n)[, 1])); %Y A336387 Cf. A175200 (positions of zeros). %Y A336387 Cf. also A173438, A336352, A336388. %K A336387 nonn %O A336387 1,21 %A A336387 _Antti Karttunen_, Jul 25 2020