This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336405 #30 Jul 30 2023 02:26:24 %S A336405 2,8,0,5,5,6,3,3,6,2,2,9,1,5,5,0,7,9,6,0,2,0,3,9,6,8,0,9,3,9,1,9,8,3, %T A336405 6,2,1,7,4,5,0,2,8,2,9,4,5,9,7,1,5,1,5,5,9,0,4,7,7,3,8,5,3,7,9,5,1,5, %U A336405 6,7,7,2,1,0,9,9,9,1,1,6,9,0,7,4,2,7,7 %N A336405 Decimal expansion of Sum_{n>=1} log(n*sin(1/n)) (negated). %C A336405 As v(n) = log(n*sin(1/n)) ~ -1/(6*n^2) when n -> oo, this series is convergent (zeta(2)/6 ~ 0.2741556778...). %F A336405 Equals Sum_{n>=1} log(n*sin(1/n)). %F A336405 Equals log(A295219). %F A336405 From _Amiram Eldar_, Jul 30 2023: (Start) %F A336405 Equals Sum_{k>=1} 2^(2*k-1)*(-1)^k*B(2*k)*zeta(2*k)/(k*(2*k)!), where B(k) is the k-th Bernoulli number. %F A336405 Equals -Sum_{k>=1} zeta(2*k)^2/(k*Pi^(2*k)). (End) %e A336405 -0.28055633622915507960203968093919836217450282945971... %p A336405 evalf(sum(log(n*sin(1/n)),n=1..infinity),50); %o A336405 (PARI) sumpos(n=1, log(n*sin(1/n))) \\ _Michel Marcus_, Jul 20 2020 %Y A336405 Cf. A013661, A233383, A248945, A295219, A336603. %Y A336405 Cf. A027641, A027642. %K A336405 nonn,cons %O A336405 0,1 %A A336405 _Bernard Schott_, Jul 20 2020 %E A336405 More terms from _Jinyuan Wang_, Jul 21 2020