This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336415 #42 Nov 18 2021 12:45:49 %S A336415 1,1,2,4,6,10,13,21,24,28,33,49,53,85,94,100,104,168,173,301,307,317, %T A336415 334,590,595,603,636,642,652,1164,1171,2195,2200,2218,2283,2295,2301, %U A336415 4349,4478,4512,4519,8615,8626,16818,16836,16844,17101,33485,33491,33507,33516,33582 %N A336415 Number of divisors of n! with equal prime multiplicities. %C A336415 A number k has "equal prime multiplicities" (or is "uniform") iff its prime signature is constant, meaning that k is a power of a squarefree number. %H A336415 David A. Corneth, <a href="/A336415/b336415.txt">Table of n, a(n) for n = 0..9999</a> %H A336415 Jon Maiga, <a href="http://sequencedb.net/s/A336415">Computer-generated formulas for A336415</a>, Sequence Machine. %F A336415 a(n) = A327527(n!). %e A336415 The a(n) uniform divisors of n for n = 1, 2, 6, 8, 30, 36 are the columns: %e A336415 1 2 6 8 30 36 %e A336415 1 3 6 15 30 %e A336415 2 4 10 16 %e A336415 1 3 8 15 %e A336415 2 6 10 %e A336415 1 5 9 %e A336415 4 8 %e A336415 3 6 %e A336415 2 5 %e A336415 1 4 %e A336415 3 %e A336415 2 %e A336415 1 %e A336415 In 20!, the multiplicity of the third prime (5) is 4 but the multiplicity of the fourth prime (7) is 2. Hence there are 2^3 - 1 = 3 divisors with all exponents 3 (we subtract |{1}| = 1 from that count as 1 has no exponent 3). - _David A. Corneth_, Jul 27 2020 %t A336415 Table[Length[Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&]],{n,0,15}] %o A336415 (PARI) a(n) = sumdiv(n!, d, my(ex=factor(d)[,2]); (#ex==0) || (vecmin(ex) == vecmax(ex))); \\ _Michel Marcus_, Jul 24 2020 %o A336415 (PARI) a(n) = {if(n<2, return(1)); my(f = primes(primepi(n)), res = 1, t = #f); f = vector(#f, i, val(n, f[i])); for(i = 1, f[1], while(f[t] < i, t--; ); res+=(1<<t - 1) ); res } %o A336415 val(n, p) = my(r=0); while(n, r+=n\=p);r \\ _David A. Corneth_, Jul 27 2020 %Y A336415 The version for distinct prime multiplicities is A336414. %Y A336415 The version for nonprime perfect powers is A336416. %Y A336415 Uniform partitions are counted by A047966. %Y A336415 Uniform numbers are A072774, with nonprime terms A182853. %Y A336415 Numbers with distinct prime multiplicities are A130091. %Y A336415 Divisors with distinct prime multiplicities are counted by A181796. %Y A336415 Maximum divisor with distinct prime multiplicities is A327498. %Y A336415 Uniform divisors are counted by A327527. %Y A336415 Maximum uniform divisor is A336618. %Y A336415 1st differences are given by A048675. %Y A336415 Cf. A000005, A000961, A001222, A001597, A007916, A112798, A124010, A327499. %Y A336415 Factorial numbers: A000142, A007489, A022559, A027423, A048656, A071626, A108731, A325272, A325273, A325617. %K A336415 nonn %O A336415 0,3 %A A336415 _Gus Wiseman_, Jul 22 2020 %E A336415 Terms a(31) and onwards from _David A. Corneth_, Jul 27 2020