This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336419 #12 Aug 31 2020 19:49:50 %S A336419 1,2,4,10,24,64,184,536,1608,5104,16448,55136,187136,658624,2339648, %T A336419 8618208,31884640,121733120,468209408,1849540416,7342849216 %N A336419 Number of divisors d of the n-th superprimorial A006939(n) with distinct prime exponents such that the quotient A006939(n)/d also has distinct prime exponents. %C A336419 A number has distinct prime exponents iff its prime signature is strict. %C A336419 The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %e A336419 The a(0) = 1 through a(3) = 10 divisors: %e A336419 1 2 12 360 %e A336419 ----------------- %e A336419 1 1 1 1 %e A336419 2 3 5 %e A336419 4 8 %e A336419 12 9 %e A336419 18 %e A336419 20 %e A336419 40 %e A336419 45 %e A336419 72 %e A336419 360 %t A336419 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336419 Table[Length[Select[Divisors[chern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,6}] %o A336419 (PARI) recurse(n,k,b,d)={if(k>n, 1, sum(i=0, k, if((i==0||!bittest(b,i)) && (i==k||!bittest(d,k-i)), self()(n, k+1, bitor(b, 1<<i), bitor(d, 1<<(k-i))))))} %o A336419 a(n)={recurse(n,1,1,1)} \\ _Andrew Howroyd_, Aug 30 2020 %Y A336419 A000110 shifted once to the left dominates this sequence. %Y A336419 A006939 lists superprimorials or Chernoff numbers. %Y A336419 A022915 counts permutations of prime indices of superprimorials. %Y A336419 A130091 lists numbers with distinct prime exponents. %Y A336419 A181796 counts divisors with distinct prime exponents. %Y A336419 A181818 gives products of superprimorials. %Y A336419 A317829 counts factorizations of superprimorials. %Y A336419 A336417 counts perfect-power divisors of superprimorials. %Y A336419 Cf. A000005, A000178, A008278, A071625, A076954, A118914, A124010, A327498, A327527, A336420, A336421, A336426, A336500, A336568. %K A336419 nonn,more %O A336419 0,2 %A A336419 _Gus Wiseman_, Jul 25 2020 %E A336419 a(10)-a(20) from _Andrew Howroyd_, Aug 31 2020