This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336420 #17 Sep 02 2020 23:04:03 %S A336420 1,1,1,1,2,1,1,1,3,2,5,2,1,1,1,4,3,11,7,7,10,5,2,1,1,1,5,4,19,14,18, %T A336420 37,25,23,15,23,10,5,2,1,1,1,6,5,29,23,33,87,70,78,74,129,84,81,49,39, %U A336420 47,23,10,5,2,1,1,1,7,6,41,34,52,165,144,183,196,424,317,376,325,299,431,304,261,172,129,81,103,47,23,10,5,2,1,1 %N A336420 Irregular triangle read by rows where T(n,k) is the number of divisors of the n-th superprimorial A006939(n) with distinct prime multiplicities and k prime factors counted with multiplicity. %C A336420 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct. %C A336420 The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %C A336420 T(n,k) is also the number of length-n vectors 0 <= v_i <= i summing to k whose nonzero values are all distinct. %e A336420 Triangle begins: %e A336420 1 %e A336420 1 1 %e A336420 1 2 1 1 %e A336420 1 3 2 5 2 1 1 %e A336420 1 4 3 11 7 7 10 5 2 1 1 %e A336420 1 5 4 19 14 18 37 25 23 15 23 10 5 2 1 1 %e A336420 The divisors counted in row n = 4 are: %e A336420 1 2 4 8 16 48 144 432 2160 10800 75600 %e A336420 3 9 12 24 72 360 720 3024 %e A336420 5 25 18 40 80 400 1008 %e A336420 7 20 54 108 504 1200 %e A336420 27 56 112 540 2800 %e A336420 28 135 200 600 %e A336420 45 189 675 756 %e A336420 50 1350 %e A336420 63 1400 %e A336420 75 4725 %e A336420 175 %t A336420 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336420 Table[Length[Select[Divisors[chern[n]],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,5},{k,0,n*(n+1)/2}] %Y A336420 A000110 gives row sums. %Y A336420 A000124 gives row lengths. %Y A336420 A000142 counts divisors of superprimorials. %Y A336420 A006939 lists superprimorials or Chernoff numbers. %Y A336420 A008278 is the version counting only distinct prime factors. %Y A336420 A008302 counts divisors of superprimorials by bigomega. %Y A336420 A022915 counts permutations of prime indices of superprimorials. %Y A336420 A076954 can be used instead of A006939. %Y A336420 A130091 lists numbers with distinct prime multiplicities. %Y A336420 A146291 counts divisors by bigomega. %Y A336420 A181796 counts divisors with distinct prime multiplicities. %Y A336420 A181818 gives products of superprimorials. %Y A336420 A317829 counts factorizations of superprimorials. %Y A336420 A336417 counts perfect-power divisors of superprimorials. %Y A336420 A336498 counts divisors of factorials by bigomega. %Y A336420 A336499 uses factorials instead superprimorials. %Y A336420 Cf. A000005, A001222, A008278, A027423, A071625, A124010, A327498, A336419, A336421, A336426, A336500, A336568. %K A336420 nonn,tabf %O A336420 0,5 %A A336420 _Gus Wiseman_, Jul 25 2020