cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336420 Irregular triangle read by rows where T(n,k) is the number of divisors of the n-th superprimorial A006939(n) with distinct prime multiplicities and k prime factors counted with multiplicity.

This page as a plain text file.
%I A336420 #17 Sep 02 2020 23:04:03
%S A336420 1,1,1,1,2,1,1,1,3,2,5,2,1,1,1,4,3,11,7,7,10,5,2,1,1,1,5,4,19,14,18,
%T A336420 37,25,23,15,23,10,5,2,1,1,1,6,5,29,23,33,87,70,78,74,129,84,81,49,39,
%U A336420 47,23,10,5,2,1,1,1,7,6,41,34,52,165,144,183,196,424,317,376,325,299,431,304,261,172,129,81,103,47,23,10,5,2,1,1
%N A336420 Irregular triangle read by rows where T(n,k) is the number of divisors of the n-th superprimorial A006939(n) with distinct prime multiplicities and k prime factors counted with multiplicity.
%C A336420 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.
%C A336420 The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
%C A336420 T(n,k) is also the number of length-n vectors 0 <= v_i <= i summing to k whose nonzero values are all distinct.
%e A336420 Triangle begins:
%e A336420   1
%e A336420   1  1
%e A336420   1  2  1  1
%e A336420   1  3  2  5  2  1  1
%e A336420   1  4  3 11  7  7 10  5  2  1  1
%e A336420   1  5  4 19 14 18 37 25 23 15 23 10  5  2  1  1
%e A336420 The divisors counted in row n = 4 are:
%e A336420   1  2  4     8   16   48   144   432  2160  10800  75600
%e A336420      3  9    12   24   72   360   720  3024
%e A336420      5  25   18   40   80   400  1008
%e A336420      7       20   54  108   504  1200
%e A336420              27   56  112   540  2800
%e A336420              28  135  200   600
%e A336420              45  189  675   756
%e A336420              50            1350
%e A336420              63            1400
%e A336420              75            4725
%e A336420             175
%t A336420 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
%t A336420 Table[Length[Select[Divisors[chern[n]],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,5},{k,0,n*(n+1)/2}]
%Y A336420 A000110 gives row sums.
%Y A336420 A000124 gives row lengths.
%Y A336420 A000142 counts divisors of superprimorials.
%Y A336420 A006939 lists superprimorials or Chernoff numbers.
%Y A336420 A008278 is the version counting only distinct prime factors.
%Y A336420 A008302 counts divisors of superprimorials by bigomega.
%Y A336420 A022915 counts permutations of prime indices of superprimorials.
%Y A336420 A076954 can be used instead of A006939.
%Y A336420 A130091 lists numbers with distinct prime multiplicities.
%Y A336420 A146291 counts divisors by bigomega.
%Y A336420 A181796 counts divisors with distinct prime multiplicities.
%Y A336420 A181818 gives products of superprimorials.
%Y A336420 A317829 counts factorizations of superprimorials.
%Y A336420 A336417 counts perfect-power divisors of superprimorials.
%Y A336420 A336498 counts divisors of factorials by bigomega.
%Y A336420 A336499 uses factorials instead superprimorials.
%Y A336420 Cf. A000005, A001222, A008278, A027423, A071625, A124010, A327498, A336419, A336421, A336426, A336500, A336568.
%K A336420 nonn,tabf
%O A336420 0,5
%A A336420 _Gus Wiseman_, Jul 25 2020