This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336421 #9 Jul 27 2020 00:24:18 %S A336421 1,3,13,76,571,5309,59341,780149 %N A336421 Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n). %C A336421 A number has distinct prime exponents iff its prime signature is strict. %C A336421 The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %e A336421 The a(2) = 13 ways: %e A336421 12/1/1 12/2/1 12/3/1 12/4/1 12/12/1 %e A336421 12/2/2 12/3/3 12/4/2 12/12/2 %e A336421 12/4/4 12/12/3 %e A336421 12/12/4 %e A336421 12/12/12 %t A336421 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336421 strsig[n_]:=UnsameQ@@Last/@FactorInteger[n]; %t A336421 Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}] %Y A336421 A000258 shifted once to the left is dominated by this sequence. %Y A336421 A336422 is the generalization to non-superprimorials. %Y A336421 A000110 counts divisors of superprimorials with distinct prime exponents. %Y A336421 A006939 lists superprimorials or Chernoff numbers. %Y A336421 A008302 counts divisors of superprimorials by bigomega. %Y A336421 A022915 counts permutations of prime indices of superprimorials. %Y A336421 A076954 can be used instead of A006939. %Y A336421 A130091 lists numbers with distinct prime exponents. %Y A336421 A181796 counts divisors with distinct prime exponents. %Y A336421 A181818 gives products of superprimorials. %Y A336421 A317829 counts factorizations of superprimorials. %Y A336421 Cf. A000005, A008278, A027423, A071625, A118914, A124010, A327498, A336417, A336419, A336420, A336426, A336500, A336568. %K A336421 nonn,more %O A336421 0,2 %A A336421 _Gus Wiseman_, Jul 25 2020