This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336422 #7 Jul 27 2020 00:24:26 %S A336422 1,3,3,6,3,5,3,10,6,5,3,13,3,5,5,15,3,13,3,13,5,5,3,24,6,5,10,13,3,7, %T A336422 3,21,5,5,5,21,3,5,5,24,3,7,3,13,13,5,3,38,6,13,5,13,3,24,5,24,5,5,3, %U A336422 20,3,5,13,28,5,7,3,13,5,7,3,42,3,5,13,13,5,7,3 %N A336422 Number of ways to choose a divisor of a divisor of n, both having distinct prime exponents. %C A336422 A number has distinct prime exponents iff its prime signature is strict. %e A336422 The a(n) ways for n = 1, 2, 4, 6, 8, 12, 30, 210: %e A336422 1/1/1 2/1/1 4/1/1 6/1/1 8/1/1 12/1/1 30/1/1 210/1/1 %e A336422 2/2/1 4/2/1 6/2/1 8/2/1 12/2/1 30/2/1 210/2/1 %e A336422 2/2/2 4/2/2 6/2/2 8/2/2 12/2/2 30/2/2 210/2/2 %e A336422 4/4/1 6/3/1 8/4/1 12/3/1 30/3/1 210/3/1 %e A336422 4/4/2 6/3/3 8/4/2 12/3/3 30/3/3 210/3/3 %e A336422 4/4/4 8/4/4 12/4/1 30/5/1 210/5/1 %e A336422 8/8/1 12/4/2 30/5/5 210/5/5 %e A336422 8/8/2 12/4/4 210/7/1 %e A336422 8/8/4 12/12/1 210/7/7 %e A336422 8/8/8 12/12/2 %e A336422 12/12/3 %e A336422 12/12/4 %e A336422 12/12/12 %t A336422 strdivs[n_]:=Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]; %t A336422 Table[Sum[Length[strdivs[d]],{d,strdivs[n]}],{n,30}] %Y A336422 A336421 is the case of superprimorials. %Y A336422 A007425 counts divisors of divisors. %Y A336422 A130091 lists numbers with distinct prime exponents. %Y A336422 A181796 counts divisors with distinct prime exponents. %Y A336422 A327498 gives the maximum divisor with distinct prime exponents. %Y A336422 A336500 counts divisors with quotient also having distinct prime exponents. %Y A336422 A336568 = not a product of two numbers with distinct prime exponents. %Y A336422 Cf. A000005, A001055, A005117, A032741, A071625, A118914, A124010, A336419, A336420. %K A336422 nonn %O A336422 1,2 %A A336422 _Gus Wiseman_, Jul 26 2020