This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336424 #13 Sep 02 2020 23:04:37 %S A336424 1,1,1,2,1,1,1,3,2,1,1,3,1,1,1,5,1,3,1,3,1,1,1,5,2,1,3,3,1,1,1,7,1,1, %T A336424 1,6,1,1,1,5,1,1,1,3,3,1,1,9,2,3,1,3,1,5,1,5,1,1,1,4,1,1,3,11,1,1,1,3, %U A336424 1,1,1,11,1,1,3,3,1,1,1,9,5,1,1,4,1,1 %N A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities). %C A336424 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct. %e A336424 The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48: %e A336424 2 4 8 5*12 16 4*9 32 48 %e A336424 2*2 2*4 3*20 4*4 3*12 4*8 4*12 %e A336424 2*2*2 3*4*5 2*8 3*3*4 2*16 3*16 %e A336424 2*2*3*5 2*2*4 2*18 2*4*4 3*4*4 %e A336424 2*2*2*2 2*2*9 2*2*8 2*24 %e A336424 2*2*3*3 2*2*2*4 2*3*8 %e A336424 2*2*2*2*2 2*2*12 %e A336424 2*2*3*4 %e A336424 2*2*2*2*3 %t A336424 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A336424 Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}] %Y A336424 A327523 is the case when n is restricted to belong to A130091 also. %Y A336424 A001055 counts factorizations. %Y A336424 A007425 counts divisors of divisors. %Y A336424 A045778 counts strict factorizations. %Y A336424 A074206 counts ordered factorizations. %Y A336424 A130091 lists numbers with distinct prime multiplicities. %Y A336424 A181796 counts divisors with distinct prime multiplicities. %Y A336424 A253249 counts nonempty chains of divisors. %Y A336424 A281116 counts factorizations with no common divisor. %Y A336424 A302696 lists numbers whose prime indices are pairwise coprime. %Y A336424 A305149 counts stable factorizations. %Y A336424 A320439 counts factorizations using A289509. %Y A336424 A327498 gives the maximum divisor with distinct prime multiplicities. %Y A336424 A336500 counts divisors of n in A130091 with quotient also in A130091. %Y A336424 A336568 = not a product of two numbers with distinct prime multiplicities. %Y A336424 A336569 counts maximal chains of elements of A130091. %Y A336424 A337256 counts chains of divisors. %Y A336424 Cf. A071625, A080688, A098859, A118914, A124010, A167865, A294068, A303707, A305150, A322453, A336420, A336570, A336571. %K A336424 nonn %O A336424 1,4 %A A336424 _Gus Wiseman_, Aug 03 2020