This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336426 #7 Jul 27 2020 00:24:33 %S A336426 3,5,6,7,9,10,11,13,14,15,17,18,19,20,21,22,23,25,26,27,28,29,30,31, %T A336426 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56, %U A336426 57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76 %N A336426 Numbers that cannot be written as a product of superprimorials {2, 12, 360, 75600, ...}. %C A336426 The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %e A336426 We have 288 = 2*12*12 so 288 is not in the sequence. %t A336426 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336426 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&],{d,Select[s,Divisible[n,#]&]}]]; %t A336426 Select[Range[100],facsusing[Array[chern,30],#]=={}&] %Y A336426 A181818 is the complement. %Y A336426 A336497 is the version for superfactorials. %Y A336426 A001055 counts factorizations. %Y A336426 A006939 lists superprimorials or Chernoff numbers. %Y A336426 A022915 counts permutations of prime indices of superprimorials. %Y A336426 A317829 counts factorizations of superprimorials. %Y A336426 A336417 counts perfect-power divisors of superprimorials. %Y A336426 Cf. A000325, A005117, A076954, A124010, A294068, A336419, A336420, A336421, A336496, A336500, A336568. %K A336426 nonn %O A336426 1,1 %A A336426 _Gus Wiseman_, Jul 26 2020