cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336437 a(n) = (n!)^n * [x^n] -log(1 - Sum_{k>=1} x^k / (k!)^n).

This page as a plain text file.
%I A336437 #6 Jul 22 2020 10:28:34
%S A336437 0,1,3,100,104585,5781843126,25450069471437282,
%T A336437 12456703705462747095073458,900677059707267544414220026068619393,
%U A336437 12337778954350678368447638232258657486399628887370,39982077640755835496555968029419604779794754953051698069276656138
%N A336437 a(n) = (n!)^n * [x^n] -log(1 - Sum_{k>=1} x^k / (k!)^n).
%t A336437 Table[(n!)^n SeriesCoefficient[-Log[1 - Sum[x^k/(k!)^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
%t A336437 b[n_, k_] := If[n == 0, 0, 1 + (1/n) Sum[Binomial[n, j]^k j b[j, k], {j, 1, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]
%Y A336437 Cf. A000629, A102223, A326321, A336427, A336438, A336439, A336440.
%K A336437 nonn
%O A336437 0,3
%A A336437 _Ilya Gutkovskiy_, Jul 21 2020