This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336476 #9 Jul 30 2020 20:20:20 %S A336476 1,1,2,1,2,2,2,1,1,2,2,2,2,2,12,1,2,1,2,2,4,2,2,2,1,2,4,2,2,12,2,1,12, %T A336476 2,4,1,2,2,4,2,2,4,2,2,6,2,2,2,3,1,12,2,2,4,4,2,4,2,2,12,2,2,2,1,4,12, %U A336476 2,2,12,4,2,1,2,2,2,2,4,4,2,2,1,2,2,4,4,2,12,2,2,6,28,2,4,2,20,2,2,3,6,1,2,12,2,2,24 %N A336476 a(n) = gcd(A000593(n), A336475(n)). %C A336476 All odd terms k in A001599 (Ore's Harmonic numbers) satisfy a(k) = A336475(k). %H A336476 Antti Karttunen, <a href="/A336476/b336476.txt">Table of n, a(n) for n = 1..16384</a> %H A336476 Antti Karttunen, <a href="/A336476/a336476.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A336476 a(n) = gcd(A000593(n), A336475(n)). %F A336476 a(n) = A324121(A000265(n)). %o A336476 (PARI) %o A336476 A000593(n) = sigma(n>>valuation(n, 2)); %o A336476 A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); }; %o A336476 A336476(n) = gcd(A000593(n), A336475(n)); %Y A336476 Cf. A000265, A000593, A001227, A001599, A324121, A336475. %Y A336476 Cf. also A324058, A336320. %K A336476 nonn %O A336476 1,3 %A A336476 _Antti Karttunen_, Jul 30 2020