cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336478 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has distinct digits in primorial base.

This page as a plain text file.
%I A336478 #11 Jul 25 2020 12:02:04
%S A336478 1,3,2,8,5,9,4,6,7,12,10,13,15,11,14,38,20,32,26,53,27,25,33,19,39,40,
%T A336478 18,34,24,28,30,22,36,16,42,37,21,31,48,47,56,23,29,50,35,17,41,44,51,
%U A336478 49,46,54,61,43,52,63,55,45,58,57,59,60,65,68,62,71,69
%N A336478 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has distinct digits in primorial base.
%C A336478 In other words, for any n > 0, a(n) + a(n+1) belongs to A321683.
%H A336478 Rémy Sigrist, <a href="/A336478/b336478.txt">Table of n, a(n) for n = 1..10000</a>
%H A336478 Rémy Sigrist, <a href="/A336478/a336478.png">Scatterplot of the first 1000000 terms</a>
%H A336478 Rémy Sigrist, <a href="/A336478/a336478.gp.txt">PARI program for A336478</a>
%H A336478 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%e A336478 The first terms, alongside the primorial representation of a(n)+a(n+1), are:
%e A336478   n   a(n)  prim(a(n)+a(n+1))
%e A336478   --  ----  -----------------
%e A336478    1     1    (2,0)
%e A336478    2     3    (2,1)
%e A336478    3     2  (1,2,0)
%e A336478    4     8  (2,0,1)
%e A336478    5     5  (2,1,0)
%e A336478    6     9  (2,0,1)
%e A336478    7     4  (1,2,0)
%e A336478    8     6  (2,0,1)
%e A336478    9     7  (3,0,1)
%e A336478   10    12  (3,2,0)
%e A336478   11    10  (3,2,1)
%e A336478   12    13  (4,2,0)
%e A336478   13    15  (4,1,0)
%e A336478   14    11  (4,0,1)
%o A336478 (PARI) See Links section.
%Y A336478 Cf. A321683, A322845, A336285.
%K A336478 nonn,look,base
%O A336478 1,2
%A A336478 _Rémy Sigrist_, Jul 22 2020