cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336483 a(n) = floor(n/10) + (5 times last digit of n).

This page as a plain text file.
%I A336483 #33 Jan 17 2025 09:09:47
%S A336483 0,5,10,15,20,25,30,35,40,45,1,6,11,16,21,26,31,36,41,46,2,7,12,17,22,
%T A336483 27,32,37,42,47,3,8,13,18,23,28,33,38,43,48,4,9,14,19,24,29,34,39,44,
%U A336483 49,5,10,15,20,25,30,35,40,45,50,6,11,16,21,26,31,36,41,46,51,7
%N A336483 a(n) = floor(n/10) + (5 times last digit of n).
%C A336483 If the resulting number is divisible by 7, then n is divisible by 7; (re)discovered by 12-year-old Nigerian Chika Ofili.
%D A336483 L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York 1966.
%H A336483 D. B. Eperson, <a href="https://www.jstor.org/stable/30214392">Puzzles, Pastimes, Problems</a>, Mathematics in School Vol. 16, No. 5 (Nov., 1987), pp. 18-19, 34-35.
%H A336483 OB360 Media, <a href="https://ob360media.com/education/12-year-old-nigerian-chika-ofili-wins-special-award-for-discovering-a-new-mathematics-formula">12-year-old Nigerian Chika Ofili wins special award for discovering a new Mathematics formula</a>, November 2019.
%H A336483 Skeptics Stack Exchange, <a href="https://skeptics.stackexchange.com/questions/45431/is-chika-ofilis-method-for-checking-divisibility-for-7-a-new-discovery-in-mat">Is Chika Ofili's method for checking divisibility for 7 a “new discovery” in math?</a>.
%H A336483 A. Zbikowski, <a href="https://archive.org/details/mobot31753002090295/page/n91/mode/1up?view=theater">Note sur la divisibilité des nombres</a>, Bull. Acad. Sci. St. Petersbourg 3 (1861) pp. 151-153.
%H A336483 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,1,-1).
%F A336483 From _Stefano Spezia_, Aug 11 2020: (Start)
%F A336483 O.g.f.: x*(5 + 5*x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 + 5*x^7 + 5*x^8 - 44*x^9)/(1 - x - x^10 + x^11).
%F A336483 a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. (End)
%t A336483 Table[Floor[n/10]+5Mod[n,10],{n,0,80}] (* or  *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,5,10,15,20,25,30,35,40,45,1},80] (* _Harvey P. Dale_, Nov 01 2023 *)
%o A336483 (PARI) a(n) = 5*(n % 10) + (n\10);
%Y A336483 Cf. A008589, A076309.
%K A336483 nonn,base,easy
%O A336483 0,2
%A A336483 _Michel Marcus_, Aug 11 2020