This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336497 #12 Aug 31 2020 04:23:38 %S A336497 3,5,6,7,9,10,11,13,14,15,17,18,19,20,21,22,23,25,26,27,28,29,30,31, %T A336497 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56, %U A336497 57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76 %N A336497 Numbers that cannot be written as a product of superfactorials A000178. %C A336497 First differs from A336426 in having 360. %e A336497 The sequence of terms together with their prime indices begins: %e A336497 3: {2} 22: {1,5} 39: {2,6} %e A336497 5: {3} 23: {9} 40: {1,1,1,3} %e A336497 6: {1,2} 25: {3,3} 41: {13} %e A336497 7: {4} 26: {1,6} 42: {1,2,4} %e A336497 9: {2,2} 27: {2,2,2} 43: {14} %e A336497 10: {1,3} 28: {1,1,4} 44: {1,1,5} %e A336497 11: {5} 29: {10} 45: {2,2,3} %e A336497 13: {6} 30: {1,2,3} 46: {1,9} %e A336497 14: {1,4} 31: {11} 47: {15} %e A336497 15: {2,3} 33: {2,5} 49: {4,4} %e A336497 17: {7} 34: {1,7} 50: {1,3,3} %e A336497 18: {1,2,2} 35: {3,4} 51: {2,7} %e A336497 19: {8} 36: {1,1,2,2} 52: {1,1,6} %e A336497 20: {1,1,3} 37: {12} 53: {16} %e A336497 21: {2,4} 38: {1,8} 54: {1,2,2,2} %t A336497 supfac[n_]:=Product[k!,{k,n}]; %t A336497 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A336497 Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&] %Y A336497 A093373 is the version for factorials, with complement A001013. %Y A336497 A336426 is the version for superprimorials, with complement A181818. %Y A336497 A336496 is the complement. %Y A336497 A000178 lists superfactorials. %Y A336497 A001055 counts factorizations. %Y A336497 A006939 lists superprimorials or Chernoff numbers. %Y A336497 A049711 is the minimum prime multiplicity in A000178(n). %Y A336497 A174605 is the maximum prime multiplicity in A000178(n). %Y A336497 A303279 counts prime factors (with multiplicity) of superprimorials. %Y A336497 A317829 counts factorizations of superprimorials. %Y A336497 A322583 counts factorizations into factorials. %Y A336497 A325509 counts factorizations of factorials into factorials. %Y A336497 Cf. A000142, A000720, A007489, A011371, A022559, A022915, A027423, A034878, A034876, A076954, A115627, A294068. %K A336497 nonn %O A336497 1,1 %A A336497 _Gus Wiseman_, Aug 03 2020