cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.

This page as a plain text file.
%I A336498 #7 Aug 06 2020 09:26:36
%S A336498 1,1,1,1,1,2,1,1,2,2,2,1,1,3,4,4,3,1,1,3,5,6,6,5,3,1,1,4,8,11,12,11,8,
%T A336498 4,1,1,4,8,11,12,12,12,12,11,8,4,1,1,4,8,12,16,19,20,20,19,16,12,8,4,
%U A336498 1,1,4,9,15,21,26,29,30,30,29,26,21,15,9,4,1
%N A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.
%C A336498 Row n is row n! of A146291. Row lengths are A022559(n) + 1.
%e A336498 Triangle begins:
%e A336498   1
%e A336498   1
%e A336498   1  1
%e A336498   1  2  1
%e A336498   1  2  2  2  1
%e A336498   1  3  4  4  3  1
%e A336498   1  3  5  6  6  5  3  1
%e A336498   1  4  8 11 12 11  8  4  1
%e A336498   1  4  8 11 12 12 12 12 11  8  4  1
%e A336498   1  4  8 12 16 19 20 20 19 16 12  8  4  1
%e A336498 Row n = 6 counts the following divisors:
%e A336498   1  2   4   8  16   48  144  720
%e A336498      3   6  12  24   72  240
%e A336498      5   9  18  36   80  360
%e A336498         10  20  40  120
%e A336498         15  30  60  180
%e A336498             45  90
%e A336498 Row n = 7 counts the following divisors:
%e A336498   1  2   4    8   16   48   144   720  5040
%e A336498      3   6   12   24   72   240  1008
%e A336498      5   9   18   36   80   336  1680
%e A336498      7  10   20   40  112   360  2520
%e A336498         14   28   56  120   504
%e A336498         15   30   60  168   560
%e A336498         21   42   84  180   840
%e A336498         35   45   90  252  1260
%e A336498              63  126  280
%e A336498              70  140  420
%e A336498             105  210  630
%e A336498                  315
%t A336498 Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]
%Y A336498 A000720 is column k = 1.
%Y A336498 A008302 is the version for superprimorials.
%Y A336498 A022559 gives row lengths minus one.
%Y A336498 A027423 gives row sums.
%Y A336498 A146291 is the generalization to non-factorials.
%Y A336498 A336499 is the restriction to divisors in A130091.
%Y A336498 A000142 lists factorial numbers.
%Y A336498 A336415 counts uniform divisors of n!.
%Y A336498 Cf. A000005, A001222, A118914, A124010, A181796, A327526, A336420.
%Y A336498 Factorial numbers: A002982, A007489, A048656, A054991, A071626, A325272, A325617, A336414, A336415, A336416, A336418.
%K A336498 nonn,tabf
%O A336498 0,6
%A A336498 _Gus Wiseman_, Aug 03 2020