cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

This page as a plain text file.
%I A336499 #6 Aug 06 2020 09:27:00
%S A336499 1,1,1,1,1,2,0,1,2,1,2,1,1,3,1,3,2,0,1,3,2,5,3,3,2,1,1,4,2,7,4,4,3,2,
%T A336499 0,1,4,2,7,4,5,7,7,6,3,2,0,1,4,2,8,8,9,10,11,11,7,8,5,2,0,1,4,3,11,8,
%U A336499 11,16,16,15,15,15,13,9,6,3,1,1,5,3,14,10,13,21,21,20,19,21,18,13,9,5,2,0
%N A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
%C A336499 Row lengths are A022559(n) + 1.
%e A336499 Triangle begins:
%e A336499   1
%e A336499   1
%e A336499   1  1
%e A336499   1  2  0
%e A336499   1  2  1  2  1
%e A336499   1  3  1  3  2  0
%e A336499   1  3  2  5  3  3  2  1
%e A336499   1  4  2  7  4  4  3  2  0
%e A336499   1  4  2  7  4  5  7  7  6  3  2  0
%e A336499   1  4  2  8  8  9 10 11 11  7  8  5  2  0
%e A336499   1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
%e A336499   1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
%e A336499   1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
%e A336499 Row n = 7 counts the following divisors:
%e A336499   1  2  4  8   16  48   144  720   {}
%e A336499      3  9  12  24  72   360  1008
%e A336499      5     18  40  80   504
%e A336499      7     20  56  112
%e A336499            28
%e A336499            45
%e A336499            63
%t A336499 Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]
%Y A336499 A000720 is column k = 1.
%Y A336499 A022559 gives row lengths minus one.
%Y A336499 A056172 appears to be column k = 2.
%Y A336499 A336414 gives row sums.
%Y A336499 A336420 is the version for superprimorials.
%Y A336499 A336498 is the version counting all divisors.
%Y A336499 A336865 is the generalization to non-factorials.
%Y A336499 A336866 lists indices of rows with a final 1.
%Y A336499 A336867 lists indices of rows with a final 0.
%Y A336499 A336868 gives the final terms in each row.
%Y A336499 A000110 counts divisors of superprimorials with distinct prime exponents.
%Y A336499 A008302 counts divisors of superprimorials by number of prime factors.
%Y A336499 A130091 lists numbers with distinct prime exponents.
%Y A336499 A181796 counts divisors with distinct prime exponents.
%Y A336499 A327498 gives the maximum divisor of n with distinct prime exponents.
%Y A336499 Cf. A000005, A001222, A008278, A098859, A118914, A124010, A146291, A336422, A336500.
%Y A336499 Factorial numbers: A000142, A002982, A027423, A048656, A048742, A054991, A071626, A336425, A336617.
%K A336499 nonn,tabf
%O A336499 0,6
%A A336499 _Gus Wiseman_, Aug 03 2020