This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336499 #6 Aug 06 2020 09:27:00 %S A336499 1,1,1,1,1,2,0,1,2,1,2,1,1,3,1,3,2,0,1,3,2,5,3,3,2,1,1,4,2,7,4,4,3,2, %T A336499 0,1,4,2,7,4,5,7,7,6,3,2,0,1,4,2,8,8,9,10,11,11,7,8,5,2,0,1,4,3,11,8, %U A336499 11,16,16,15,15,15,13,9,6,3,1,1,5,3,14,10,13,21,21,20,19,21,18,13,9,5,2,0 %N A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity. %C A336499 Row lengths are A022559(n) + 1. %e A336499 Triangle begins: %e A336499 1 %e A336499 1 %e A336499 1 1 %e A336499 1 2 0 %e A336499 1 2 1 2 1 %e A336499 1 3 1 3 2 0 %e A336499 1 3 2 5 3 3 2 1 %e A336499 1 4 2 7 4 4 3 2 0 %e A336499 1 4 2 7 4 5 7 7 6 3 2 0 %e A336499 1 4 2 8 8 9 10 11 11 7 8 5 2 0 %e A336499 1 4 3 11 8 11 16 16 15 15 15 13 9 6 3 1 %e A336499 1 5 3 14 10 13 21 21 20 19 21 18 13 9 5 2 0 %e A336499 1 5 3 14 10 14 25 23 27 24 30 28 28 25 20 16 11 5 2 0 %e A336499 Row n = 7 counts the following divisors: %e A336499 1 2 4 8 16 48 144 720 {} %e A336499 3 9 12 24 72 360 1008 %e A336499 5 18 40 80 504 %e A336499 7 20 56 112 %e A336499 28 %e A336499 45 %e A336499 63 %t A336499 Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}] %Y A336499 A000720 is column k = 1. %Y A336499 A022559 gives row lengths minus one. %Y A336499 A056172 appears to be column k = 2. %Y A336499 A336414 gives row sums. %Y A336499 A336420 is the version for superprimorials. %Y A336499 A336498 is the version counting all divisors. %Y A336499 A336865 is the generalization to non-factorials. %Y A336499 A336866 lists indices of rows with a final 1. %Y A336499 A336867 lists indices of rows with a final 0. %Y A336499 A336868 gives the final terms in each row. %Y A336499 A000110 counts divisors of superprimorials with distinct prime exponents. %Y A336499 A008302 counts divisors of superprimorials by number of prime factors. %Y A336499 A130091 lists numbers with distinct prime exponents. %Y A336499 A181796 counts divisors with distinct prime exponents. %Y A336499 A327498 gives the maximum divisor of n with distinct prime exponents. %Y A336499 Cf. A000005, A001222, A008278, A098859, A118914, A124010, A146291, A336422, A336500. %Y A336499 Factorial numbers: A000142, A002982, A027423, A048656, A048742, A054991, A071626, A336425, A336617. %K A336499 nonn,tabf %O A336499 0,6 %A A336499 _Gus Wiseman_, Aug 03 2020