A336504 3-practical numbers: numbers m such that the polynomial x^m - 1 has a divisor of every degree <= m in the prime field F_3[x].
1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 26, 27, 30, 32, 36, 39, 40, 42, 44, 45, 48, 52, 54, 56, 60, 63, 64, 66, 72, 78, 80, 81, 84, 88, 90, 96, 99, 100, 104, 105, 108, 112, 117, 120, 126, 128, 130, 132, 135, 140, 144, 150, 156, 160, 162, 165, 168, 176, 180
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack and Lola Thompson, On the degrees of divisors of T^n-1>, New York Journal of Mathematics, Vo. 19 (2013), pp. 91-116, preprint, arXiv:1206.2084 [math.NT], 2012.
- Lola Thompson, Products of distinct cyclotomic polynomials, Ph.D. thesis, Dartmouth College, 2012.
- Lola Thompson, On the divisors of x^n - 1 in F_p[x], International Journal of Number Theory, Vol. 9, No. 2 (2013), pp. 421-430.
- Lola Thompson, Variations on a question concerning the degrees of divisors of x^n - 1, Journal de Théorie des Nombres de Bordeaux, Vol. 26, No. 1 (2014), pp. 253-267.
- Eric Weisstein's World of Mathematics, Finite Field.
- Wikipedia, Finite field.
Programs
-
Mathematica
rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; mo[n_, p_] := MultiplicativeOrder[p, n/p^IntegerExponent[n, p]]; ppQ[n_, p_] := Module[{d = Divisors[n]}, m = mo[#, p] & /@ d; ns = EulerPhi[d]/m; r = rep[m, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] > 0]; Select[Range[200], ppQ[#, 3] &]
Comments