A336507 Lambda-practical numbers (A336506) that are not phi-practical (A260653).
45, 135, 225, 405, 675, 765, 855, 1035, 1125, 1215, 1275, 1305, 1395, 1665, 1845, 1935, 2025, 2115, 2295, 2565, 3105, 3375, 3645, 3825, 3915, 4185, 4275, 4995, 5175, 5535, 5625, 5805, 6075, 6345, 6375, 6525, 6885, 6975, 7155, 7695, 7965, 8235, 8325, 9045, 9225
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..300
- Lola Thompson, Products of distinct cyclotomic polynomials, Ph.D. thesis, Dartmouth College, 2012.
- Lola Thompson, Variations on a question concerning the degrees of divisors of x^n - 1, Journal de Théorie des Nombres de Bordeaux, Vol. 26, No. 1 (2014), pp. 253-267.
Programs
-
Mathematica
phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok=True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; lambdaPracticalQ[n_] := Module[{d = Divisors[n], lam, ns, r, x}, lam = CarmichaelLambda[d]; ns = EulerPhi[d]/lam; r = rep[lam, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] > 0]; Select[Range[1000], !phiPracticalQ[#] && lambdaPracticalQ[#] &] (* after Frank M Jackson at A260653 *)
Comments