cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336507 Lambda-practical numbers (A336506) that are not phi-practical (A260653).

Original entry on oeis.org

45, 135, 225, 405, 675, 765, 855, 1035, 1125, 1215, 1275, 1305, 1395, 1665, 1845, 1935, 2025, 2115, 2295, 2565, 3105, 3375, 3645, 3825, 3915, 4185, 4275, 4995, 5175, 5535, 5625, 5805, 6075, 6345, 6375, 6525, 6885, 6975, 7155, 7695, 7965, 8235, 8325, 9045, 9225
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

Thompson (2012) proved that all phi-practical numbers are lambda-practical, that all the terms of this sequence are not squarefree numbers, and that this sequence is infinite: for example, 45 * Product_{i=10..k} prime(i) is a term for all k >= 10.

Crossrefs

Subsequence of A013929.
Complement of A260653 with respect to A336506.

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok=True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; lambdaPracticalQ[n_] := Module[{d = Divisors[n], lam, ns, r, x}, lam = CarmichaelLambda[d]; ns = EulerPhi[d]/lam; r = rep[lam, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] > 0]; Select[Range[1000], !phiPracticalQ[#] && lambdaPracticalQ[#] &] (* after Frank M Jackson at A260653 *)