A336509 Even squarefree numbers k such that d_{i+1}/d_i < 2 for all 1 < i < tau(k) - 1, where 1 = d_1 < d_2 < ... < d_tau(k) = k are the divisors of k, and tau(k) is their number (A000005).
6, 30, 210, 330, 390, 510, 570, 690, 870, 2310, 2730, 3570, 3990, 4290, 4830, 5610, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 8610, 8970, 9030, 9570, 9690, 9870, 10230, 11130, 11310, 11730, 12090, 12210, 12390, 12810, 13110, 13530, 14070, 14190, 14430, 14790, 14910
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Lola Thompson, Polynomials with divisors of every degree, Journal of Number Theory, Vol. 132, No. 5 (2012), pp. 1038-1053.
- Lola Thompson, Variations on a question concerning the degrees of divisors of x^n - 1, Journal de Théorie des Nombres de Bordeaux, Vol. 26, No. 1 (2014), pp. 253-267.
Programs
-
Mathematica
sdQ[n_] := SquareFreeQ[n] && Length[(d = Rest @ Most @ Divisors[n])] >0 && Max[Rest[d]/Most[d]] < 2; Select[Range[2, 15000, 2], sdQ]
Comments