This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336510 #15 Feb 24 2023 11:54:28 %S A336510 0,1,3,3,7,4,12,13,13,8,24,26,58,51,53,53,117,116,244,240,250,235,491, %T A336510 488,488,457,459,451,963,964,1988,1989,2007,1942,1946,1946,3994,3867, %U A336510 3897,3900,7996,7991,16183,16167,16163,15906,32290,32288,32288,32289,32355 %N A336510 a(n) = Sum_{p | A055204(n)} 2^(pi(p) - 1). %C A336510 All terms of A055204 are squarefree by definition, therefore we can compress the terms of A055204 by interpreting the terms of reverse(A067255(A055204(n))) as a binary number and converted to decimal. %H A336510 Michael De Vlieger, <a href="/A336510/b336510.txt">Table of n, a(n) for n = 1..10000</a> %H A336510 Michael De Vlieger, <a href="/A336510/a336510.png">Plot of the bits of a(n)</a> with (x,y) = (n, a(n)) for 1 <= n <= 2^14. %e A336510 A055204(1) = 1, the empty product; by convention a(1) = 0. %e A336510 5! = 120 = 2^3 * 3 * 5, therefore 2 * 3 * 5 = 30 is the squarefree part, which we write "111", a 1 in the first three places to signify a product of the first three primes. Interpreting "111" as a binary number yields 8. Thus a(5) = 8. %e A336510 13! = 6227020800 = 2^10 * 3^5 * 5^2 * 7 * 11 * 13; its squarefree part is 3 * 7 * 11 * 13 = 3003, a product of the 2nd, 4th, 5th, and 6th primes. Therefore we write "111010", which, interpreted as a binary number and converted to decimal, is 58. Thus a(13) = 58. %e A336510 Table illustrating the first terms of this sequence, with b(n) = A055204(n): %e A336510 Multiplicities of p|b(n) %e A336510 n b(n) 2 3 5 7 11 13 17 -> Binary a(n) %e A336510 -------------------------------------------------- %e A336510 1 1 . . . . . . . 0 0 %e A336510 2 2 1 . . . . . . 1 1 %e A336510 3 6 1 1 . . . . . 11 3 %e A336510 4 6 1 1 . . . . . 11 3 %e A336510 5 30 1 1 1 . . . . 111 7 %e A336510 6 5 . . 1 . . . . 100 4 %e A336510 7 35 . . 1 1 . . . 1100 12 %e A336510 8 70 1 . 1 1 . . . 1101 13 %e A336510 9 70 1 . 1 1 . . . 1101 13 %e A336510 10 7 . . . 1 . . . 1000 8 %e A336510 11 77 . . . 1 1 . . 11000 24 %e A336510 12 231 . 1 . 1 1 . . 11010 26 %e A336510 13 3003 . 1 . 1 1 1 . 111010 58 %e A336510 14 858 1 1 . . 1 1 . 110011 51 %e A336510 15 1430 1 . 1 . 1 1 . 110101 53 %e A336510 16 1430 1 . 1 . 1 1 . 110101 53 %e A336510 17 24310 1 . 1 . 1 1 1 1110101 117 %e A336510 18 12155 . . 1 . 1 1 1 1110100 116 %e A336510 ... %t A336510 Block[{nn = 51, k, p}, k = PrimePi@ nn; Array[Set[p[Prime@ #], 0] &, k]; {0}~Join~Reap[Do[Map[Set[p[#1], Mod[p[#1] + Mod[#2, 2], 2]] & @@ # &, FactorInteger@ i]; Sow[FromDigits[Array[p[Prime[k - # + 1]] &, k], 2]], {i, 2, nn}]][[-1, 1]]] (* or *) %t A336510 Block[{nn = 51, k = 1}, Reap[Do[Map[If[Mod[k, #] == 0, k /= #, k *= #] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ i]]; Sow[If[k == 1, 0, Total@ Map[2^(PrimePi[#] - 1) &, FactorInteger[k][[All, 1]] ] ] ], {i, nn}]][[-1, 1]]] %Y A336510 Cf. A055204, A067255, A240504. %K A336510 nonn,easy %O A336510 1,3 %A A336510 _Michael De Vlieger_, Sep 18 2020