This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336519 #22 Aug 22 2020 18:41:33 %S A336519 3,2,53,7,58979,161923,2643383,1746893,6971,5,17,1499,11, %T A336519 1555077581737,297707,13,37,126541,2130276389911155737,1429,71971,383, %U A336519 61,1559,29,193,12073,698543,157,20289606809,23687,1249,59,2393,251,101,15827173,82351,661 %N A336519 Primes in Pi (variant of A336520): a(n) is the smallest prime factor of A090897(n) that does not appear in earlier terms of a, or 1, if no such factor exists. %C A336519 Inspired by a comment of _Mario Cortés_ in A090897, who suggests that 1 might not appear in this sequence. %H A336519 Peter Luschny, <a href="/A336519/a336519.txt">Prime factorization for n = 1..100</a>. %e A336519 [ 1] 3, {3} -> 3; %e A336519 [ 2] 14, {2, 7} -> 2; %e A336519 [ 3] 159, {3, 53} -> 53; %e A336519 [ 4] 2653, {7, 379} -> 7; %e A336519 [ 5] 58979, {58979} -> 58979; %e A336519 [ 6] 323846, {2, 161923} -> 161923; %e A336519 [ 7] 2643383, {2643383} -> 2643383; %e A336519 [ 8] 27950288, {2, 1746893} -> 1746893; %e A336519 [ 9] 419716939, {6971, 60209} -> 6971; %e A336519 [10] 9375105820, {2, 5, 1163, 403057} -> 5. %p A336519 aList := proc(len) local p, R, spl; R := []; %p A336519 spl := L -> [seq([seq(L[i], i=1 + n*(n+1)/2..(n+1)*(n+2)/2)], n=0..len)]: %p A336519 ListTools:-Reverse(convert(floor(Pi*10^((len+1)*(len+2)/2)), base, 10)): %p A336519 map(`@`(parse,cat,op), spl(%)); map(NumberTheory:-PrimeFactors, %); %p A336519 for p in % do ListTools:-SelectFirst(p -> evalb(not p in R), p); %p A336519 R := [op(R), `if`(%=NULL, 1, %)] od end: aList(30); %t A336519 Block[{nn = 38, s}, s = RealDigits[Pi, 10, (# + 1) (# + 2)/2 &@ nn][[1]]; Nest[Function[{a, n}, Append[a, SelectFirst[FactorInteger[FromDigits@ s[[1 + n (n + 1)/2 ;; (n + 1) (n + 2)/2 ]]][[All, 1]], FreeQ[a, #] &] /. k_ /; MissingQ@ k -> 1]] @@ {#, Length@ #} &, {}, nn + 1]] (* _Michael De Vlieger_, Aug 21 2020 *) %o A336519 (SageMath) %o A336519 def Select(item, Selected): %o A336519 return next((x for x in item if not (x in Selected)), 1) %o A336519 def PiPart(n): %o A336519 return floor(pi * 10^(n * (n + 1) // 2 - 1)) % 10^n %o A336519 def A336519List(len): %o A336519 prev = [] %o A336519 for n in range(1, len + 1): %o A336519 p = prime_factors(PiPart(n)) %o A336519 prev.append(Select(p, prev)) %o A336519 return prev %o A336519 print(A336519List(39)) %Y A336519 Cf. A090897, A336520. %K A336519 nonn,base %O A336519 1,1 %A A336519 _Peter Luschny_, Aug 21 2020