This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336520 #26 Aug 23 2020 14:29:02 %S A336520 3,2,53,379,58979,161923,2643383,1746893,6971,5,17,1499,11, %T A336520 1555077581737,297707,4733,37,126541,2130276389911155737,1429,71971, %U A336520 383,61,1559,29,193,12073,698543,157,20289606809,23687,1249,59,2393,251,101,15827173,82351,661 %N A336520 Primes in Pi: a(n) is the smallest prime factor of A090897(n) that does not appear in earlier terms of A090897, or 1, if no such factor exists. %C A336520 Inspired by a comment of _Mario Cortés_ in A090897, who suggests that 1 might not appear in this sequence. %C A336520 Differs from A336519 for n = 4, 16, 73, 83, 90, .... %C A336520 a(n) is not 1 for the first 2000 terms. We can prove that a(n) has a prime factor p that does not divide LCM(A090897(1), ..., A090897(n-1)) without using prime number factorization. The method is explained in the link below. - _David A. Corneth_, Aug 22 2020 %H A336520 Peter Luschny, <a href="/A336520/a336520.txt">Prime factorization for n = 1..100</a>. %H A336520 David A. Corneth, <a href="/A336520/a336520_1.gp.txt">Explanation of a method to determine the primality of a(n). Comes with example and PARI program. </a> %e A336520 [ 1] 3, {3} -> 3; %e A336520 [ 2] 14, {2, 7} -> 2; %e A336520 [ 3] 159, {3, 53} -> 53; %e A336520 [ 4] 2653, {7, 379} -> 379; %e A336520 [ 5] 58979, {58979} -> 58979; %e A336520 [ 6] 323846, {2, 161923} -> 161923; %e A336520 [ 7] 2643383, {2643383} -> 2643383; %e A336520 [ 8] 27950288, {2, 1746893} -> 1746893; %e A336520 [ 9] 419716939, {6971, 60209} -> 6971; %e A336520 [10] 9375105820, {2, 5, 1163, 403057} -> 5. %o A336520 (SageMath) %o A336520 def Select(item, Selected): %o A336520 return next((x for x in item if not (x in Selected)), 1) %o A336520 def PiPart(n): %o A336520 return floor(pi * 10^(n * (n + 1) // 2 - 1)) % 10^n %o A336520 def A336520List(len): %o A336520 prev = []; ret = [] %o A336520 for n in range(1, len + 1): %o A336520 p = prime_factors(PiPart(n)) %o A336520 ret.append(Select(p, prev)) %o A336520 prev.extend(p) %o A336520 return ret %o A336520 print(A336520List(39)) %o A336520 # Query function of _David A. Corneth_ to determine if a(n) is prime. %o A336520 def LcmPiPart(n): %o A336520 return lcm([PiPart(n) for n in (1..n)]) %o A336520 def is_an_prime(n): %o A336520 lcmpi = LcmPiPart(n - 1) %o A336520 lm, m = 1, PiPart(n) %o A336520 while lm != m: %o A336520 lm, m = m, lcm(lcmpi, m) // lcmpi %o A336520 return m > 1 %Y A336520 Cf. A090897, A336519 (variant). %K A336520 nonn,base %O A336520 1,1 %A A336520 _Peter Luschny_, Aug 22 2020