cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336524 Triangular array read by rows. T(n,k) is the number of unlabeled binary trees with n internal nodes and exactly k distinguished external nodes (leaves) for 0 <= k <= n+1 and n >= 0.

This page as a plain text file.
%I A336524 #23 Oct 19 2020 11:26:46
%S A336524 1,1,1,2,1,2,6,6,2,5,20,30,20,5,14,70,140,140,70,14,42,252,630,840,
%T A336524 630,252,42,132,924,2772,4620,4620,2772,924,132,429,3432,12012,24024,
%U A336524 30030,24024,12012,3432,429
%N A336524 Triangular array read by rows. T(n,k) is the number of unlabeled binary trees with n internal nodes and exactly k distinguished external nodes (leaves) for 0 <= k <= n+1 and n >= 0.
%H A336524 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 213.
%F A336524 O.g.f. for column k: 1/k!*(d/dy)^k y*B(y*x)|y=1 where B(x) is the o.g.f. for A000108.
%F A336524 From _Vladimir Kruchinin_, Oct 16 2020: (Start)
%F A336524 O.g.f.: (1-sqrt(-4*x*y-4*x+1))/(2*x).
%F A336524 T(n,m) = C(n+m,n)*C(2*n+1,n+m)/(2*n+1).
%F A336524 (End)
%e A336524 Taylor series starts: (y + 1) + x*(y + 1)^2 + 2*x^2*(y + 1)^3 + 5*x^3*(y + 1)^4 + 14*x^4*(y + 1)^5 + ...
%e A336524 Triangle T(n, k) begins:
%e A336524    1,   1;
%e A336524    1,   2,   1;
%e A336524    2,   6,   6,   2;
%e A336524    5,  20,  30,  20,   5;
%e A336524   14,  70, 140, 140,  70,  14;
%e A336524   42, 252, 630, 840, 630, 252, 42;
%e A336524   ...
%t A336524 nn = 5; b[z_] := (1 - Sqrt[1 - 4 z])/(2 z);Map[Select[#, # > 0 &] &,Transpose[Table[CoefficientList[Series[D[v b[v z], {v, k}]/k! /. v -> 1, {z, 0, nn}], z], {k, 0, nn + 1}]]] // Grid
%o A336524 (Maxima)
%o A336524 T(n,m):=(binomial(n+m,n)*binomial(2*n+1,n+m))/(2*n+1); /* _Vladimir Kruchinin_, Oct 16 2020 */
%o A336524 (PARI) for(n=1,8,for(k=0,n,print1(binomial(n,k)*binomial(2*n-2,n-1)/n,", "));print()) \\ _Hugo Pfoertner_, Oct 16 2020
%Y A336524 Cf. A025225 (row sums), A000108 (column k=0), A000984 (column k=1), A002457 (column k=2).
%Y A336524 Cf. A007318.
%K A336524 nonn,tabf
%O A336524 0,4
%A A336524 _Geoffrey Critzer_, Jul 24 2020