This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336528 #20 Oct 28 2023 11:41:03 %S A336528 1,2,12,21,112,122,211,221,1112,1121,1211,1222,2111,2122,2212,2221, %T A336528 11112,11122,11221,11222,12211,12222,21111,21122,22111,22112,22211, %U A336528 22221,111112,111121,111212,112112,112121,112122,112212,121111,121122,121211,121222,122122 %N A336528 a(1) = 1; a(2) = 2; for n > 2, a(n) is the least number > a(n-1) whose decimal representation is uniquely the concatenation of the decimal representations of two distinct earlier terms. %C A336528 This sequence is inspired by Ulam sequence (A002858). %C A336528 All terms belong to A007931. %C A336528 Applying the mapping 1 -> 0, 2 -> 1 to the decimal representations of the terms of this sequence gives the sequence U({0, 1}) described in the article by Bade et al. in Links section. - _Rémy Sigrist_, Aug 08 2020 %H A336528 Rémy Sigrist, <a href="/A336528/b336528.txt">Table of n, a(n) for n = 1..15616</a> (terms < 10^15) %H A336528 Tej Bade, Kelly Cui, Antoine Labelle, and Deyuan Li, <a href="https://arxiv.org/abs/2008.02762">Ulam Sets in New Settings</a>, arXiv:2008.02762 [math.CO], 2020. See also <a href="http://math.colgate.edu/~integers/u102/u102.pdf">Integers</a> (2020) Vol. 20, #A102. %H A336528 Rémy Sigrist, <a href="/A336528/a336528.gp.txt">PARI program for A336528</a> %e A336528 The first terms, alongside A007931 and the corresponding concatenations, are: %e A336528 n a(n) A007931 concatenations %e A336528 -- ---- ------- -------------- %e A336528 1 1 1 %e A336528 2 2 2 %e A336528 11 %e A336528 3 12 12 1|2 %e A336528 4 21 21 2|1 %e A336528 22 %e A336528 111 1|11, 11|1 %e A336528 5 112 112 1|12 %e A336528 121 1|21, 12|1 %e A336528 6 122 122 12|2 %e A336528 7 211 211 21|1 %e A336528 212 2|12, 21|2 %e A336528 8 221 221 2|21 %e A336528 222 %e A336528 1111 %e A336528 9 1112 1112 1|112 %e A336528 10 1121 1121 112|1 %o A336528 (PARI) See Links section. %Y A336528 Cf. A002858, A007931, A336527 (binary variant). %K A336528 nonn,base %O A336528 1,2 %A A336528 _Rémy Sigrist_, Jul 24 2020