cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336529 a(n) = (n^3+5*n+3)/3 + 2*floor(n/2) + a(n-2), with a(0)=1 and a(1)=3.

This page as a plain text file.
%I A336529 #23 May 28 2021 17:03:08
%S A336529 1,3,10,20,43,75,132,208,325,475,686,948,1295,1715,2248,2880,3657,
%T A336529 4563,5650,6900,8371,10043,11980,14160,16653,19435,22582,26068,29975,
%U A336529 34275,39056,44288,50065,56355,63258,70740,78907,87723,97300,107600,118741,130683,143550,157300
%N A336529 a(n) = (n^3+5*n+3)/3 + 2*floor(n/2) + a(n-2), with a(0)=1 and a(1)=3.
%C A336529 Let S be a fixed matching of size 2 in a complete n-uniform hypergraph G with >= 4n vertices. Given T,T' (each also a matching of size 2), define the equivalence relation where T ~ T' if and only if there exists an automorphism of G that maps every hyperedge in T to a hyperedge in T' while mapping every hyperedge in S to a hyperedge in S. Then the number of equivalence classes is a(n).
%C A336529 a(n) is the number of equivalence classes of 2 X 2 matrices with nonnegative integer entries where each row and column sum to at most n, such that two matrices are related if one can be obtained from the other by permuting rows and columns.
%H A336529 Michael De Vlieger, <a href="/A336529/b336529.txt">Table of n, a(n) for n = 0..10000</a>
%H A336529 Yu Hin Au, Nathan Lindzey, and Levent Tunçel, <a href="https://arxiv.org/abs/2008.08628">Matchings, hypergraphs, association schemes, and semidefinite optimization</a>, arXiv:2008.08628 [math.CO], 2020.
%H A336529 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-5,5,1,-3,1).
%F A336529 a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7). - _Wesley Ivan Hurt_, Nov 04 2020
%F A336529 G.f.: (1 + 2*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^2). - _Colin Barker_, Nov 05 2020
%e A336529 To see a(2)=10, let S = {{1,2},{3,4}}. Then a representative from each of the 10 equivalence classes are
%e A336529   1. {{1,2}, {3,4}}
%e A336529   2. {{1,3}, {2,4}}
%e A336529   3. {{1,5}, {3,4}}
%e A336529   4. {{1,3}, {4,5}}
%e A336529   5. {{1,2}, {5,6}}
%e A336529   6. {{1,3}, {5,6}}
%e A336529   7. {{1,5}, {2,6}}
%e A336529   8. {{1,5}, {3,6}}
%e A336529   9. {{1,5}, {6,7}}
%e A336529   10. {{5,6}, {7,8}}
%e A336529 Likewise, in the 2 X 2 matrix interpretation, a representative from each of the a(2)=10 equivalence classes are
%e A336529   [2 0 ; 0 2]
%e A336529   [1 1 ; 1 1]
%e A336529   [2 0 ; 0 1]
%e A336529   [1 1 ; 1 0]
%e A336529   [2 0 ; 0 0]
%e A336529   [1 1 ; 0 0]
%e A336529   [1 0 ; 1 0]
%e A336529   [1 0 ; 0 1]
%e A336529   [1 0 ; 0 0]
%e A336529   [0 0 ; 0 0]
%t A336529 Nest[Append[#1, (#2^3 + 5 #2 + 3)/3 + 2*Floor[#2/2] + #1[[-2]] ] & @@ {#, Length@ #} &, {1, 3}, 42] (* _Michael De Vlieger_, Nov 04 2020 *)
%t A336529 LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,10,20,43,75,132},60] (* _Harvey P. Dale_, May 28 2021 *)
%o A336529 (PARI) Vec((1 + 2*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^2) + O(x^40)) \\ _Colin Barker_, Nov 05 2020
%Y A336529 Cf. A316587.
%K A336529 nonn,easy
%O A336529 0,2
%A A336529 _Yu Hin Au_, Jul 24 2020