cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336531 A sieve: start with the positive integers. Let a(1)=1. Mark out the following numbers: a(1)+1, a(1)+1+2, a(1)+1+2+3, a(1)+1+2+3+4, ... . The next integer in the list not marked out is 3, so a(2)=3. Mark out the following numbers: a(2)+1, a(2)+1+2, a(2)+1+2+3, a(2)+1+2+3+4, ... . Repeat the procedure for a(3), a(4), a(5), ... .

This page as a plain text file.
%I A336531 #14 Oct 05 2020 05:56:37
%S A336531 1,3,5,10,12,14,19,21,23,28,30,32,52,54,61,63,70,72,86,95,102,104,111,
%T A336531 113,142,144,151,153,160,162,169,171,212,221,230,246,268,270,293,300,
%U A336531 302,309,311,318,320,327,349,358,360
%N A336531 A sieve: start with the positive integers. Let a(1)=1. Mark out the following numbers: a(1)+1, a(1)+1+2, a(1)+1+2+3, a(1)+1+2+3+4, ... . The next integer in the list not marked out is 3, so a(2)=3. Mark out the following numbers: a(2)+1, a(2)+1+2, a(2)+1+2+3, a(2)+1+2+3+4, ... . Repeat the procedure for a(3), a(4), a(5), ... .
%C A336531 Are there infinitely many pairs of the form (a(n), a(n)+2)? Let b(m) be the number of pairs less than m that differ by 2, and let s be the sum of reciprocals of consecutive terms of these pairs:
%C A336531 ---------------------
%C A336531   m  | b(m)|    s
%C A336531 ---------------------
%C A336531 10^2 |  11 | 2.627931
%C A336531 10^3 |  34 | 2.788503
%C A336531 10^4 |  64 | 2.807758
%C A336531 10^5 |  95 | 2.809793
%C A336531 10^6 | 151 | 2.810210
%C A336531 10^7 | 241 | 2.810273
%C A336531 10^8 | 386 | 2.810284
%C A336531 ---------------------
%C A336531 Does the sum of these reciprocals ((1/1 + 1/3) +(1/3 + 1/5) + (1/10 + 1/12) + (1/12 + 1/14) + (1/19 + 1/21) + ...) converge to a finite number?
%F A336531 a(n) = A030194(n-1) + 1. - _Hugo Pfoertner_, Oct 05 2020
%e A336531 The first few sieving stages are as follows:
%e A336531 1 2 3 4  5 6  7 8 9 10 11  12 13  14 15  16 17 18 19 20   21 22   23 ...
%e A336531 1 X 3 X  5 6  X 8 9 10 X   12 13  14 15  X  17 18 19 20   21 X    23 ...
%e A336531 1 X 3 XX 5 X  X 8 X 10 X   12 X   14 15  X  17 X  19 20   21 X    23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XX  12 X   14 X   X  17 X  19 X    21 X    23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XXX 12 XX  14 X   XX 17 X  19 XX   21 X    23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XX  XX 17 XX 19 XX   21 XX   23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X  XX 19 XXX  21 XX   23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X  XX 19 XXXX 21 XXX  23 ...
%e A336531 1 X 3 XX 5 XX X X X 10 XXX 12 XXX 14 XXX XX X  XX 19 XXXX 21 XXXX 23 ...
%e A336531 ... Continue forever and the numbers not crossed off give the sequence.
%Y A336531 Cf. A000217, A030194.
%K A336531 nonn
%O A336531 1,2
%A A336531 _Lechoslaw Ratajczak_, Oct 04 2020