A336533 Lexicographically earliest sequence of positive terms such that for any n > 0, n = Sum_{k >= 0} b(k)*a(k+1) where Sum_{k >= 0} b(k)*2^k is the binary expansion of a(n).
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 23, 26, 27, 29, 30, 31, 47, 55, 58, 59, 61, 62, 63, 93, 94, 95, 111, 119, 122, 123, 125, 126, 127, 191, 221, 222, 223, 239, 247, 250, 251, 253, 254, 255, 382, 383, 447, 477, 478, 479, 495, 503, 506, 507, 509, 510, 511, 767
Offset: 1
Examples
The first terms, alongside their binary representation and the corresponding partition of n, are: n a(n) bin(a(n)) Partition of n -- ---- --------- ------------------------- 1 1 1 a(1) 2 2 10 a(2) 3 3 11 a(2) + a(1) 4 5 101 a(3) + a(1) 5 6 110 a(3) + a(2) 6 7 111 a(3) + a(2) + a(1) 7 10 1010 a(4) + a(2) 8 11 1011 a(4) + a(2) + a(1) 9 13 1101 a(4) + a(3) + a(1) 10 14 1110 a(4) + a(3) + a(2) 11 15 1111 a(4) + a(3) + a(2) + a(1)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Binary plot of the first 1000 terms
- Rémy Sigrist, PARI program for A336533
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
See Links section.
Formula
a(Sum_{k = 1..n} a(k)) = 2^n - 1 for any n > 0.
Comments