This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336550 #22 Jul 29 2020 16:38:03 %S A336550 6,24,28,96,120,234,384,496,936,1536,1638,6144,8128,24576,42588,98304, %T A336550 393216,1089270,1572864,6291456,25165824,33550336,100663296,115048440, %U A336550 402653184,1185125760,1610612736 %N A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero. %C A336550 Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k). %C A336550 Sequence is infinite because all numbers of the form 6*4^n (A002023) are present. %C A336550 Question: Are there any odd terms? %H A336550 <a href="/index/O#opnseqs">Index entries for sequences where odd perfect numbers must occur, if they exist at all</a> %o A336550 (PARI) %o A336550 A007947(n) = factorback(factorint(n)[, 1]); %o A336550 isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); }; %Y A336550 Intersection of A175200 and A336552. %Y A336550 Cf. A007947, A326143, A336551. %Y A336550 Cf. A000396, A002023, A326145 (subsequences). %Y A336550 Cf. also A336641 for a similar construction. %K A336550 nonn,more %O A336550 1,1 %A A336550 _Antti Karttunen_, Jul 28 2020