A336569 Number of maximal strict chains of divisors from n to 1 using elements of A130091 (numbers with distinct prime multiplicities).
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 3, 1, 0, 1, 2, 2, 0, 1, 4, 1, 2, 0, 2, 1, 3, 0, 3, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 5, 1, 0, 2, 2, 0, 0, 1, 4, 1, 0, 1, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(n) chains for n = 12, 72, 144, 192 (ones not shown): 12/3 72/18/2 144/72/18/2 192/96/48/24/12/3 12/4/2 72/18/9/3 144/72/18/9/3 192/64/32/16/8/4/2 72/24/12/3 144/48/24/12/3 192/96/32/16/8/4/2 72/24/8/4/2 144/72/24/12/3 192/96/48/16/8/4/2 72/24/12/4/2 144/48/16/8/4/2 192/96/48/24/8/4/2 144/48/24/8/4/2 192/96/48/24/12/4/2 144/72/24/8/4/2 144/48/24/12/4/2 144/72/24/12/4/2
Crossrefs
A336423 is the non-maximal version.
A336570 is the version for chains not necessarily containing n.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
Programs
-
Mathematica
strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; strchs[n_]:=If[n==1,{{}},If[!strsigQ[n],{},Join@@Table[Prepend[#,d]&/@strchs[d],{d,Select[Most[Divisors[n]],strsigQ]}]]]; Table[Length[fasmax[strchs[n]]],{n,100}]
Comments