A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) sets for n = 36, 120, 144, 180 (ones not shown): {2,18} {3,12,24} {2,18,72} {2,18} {3,12} {5,20,40} {3,9,18,72} {3,12} {2,4,12} {2,4,8,24} {3,12,24,48} {5,20} {3,9,18} {2,4,8,40} {3,12,24,72} {5,45} {2,4,12,24} {2,4,8,16,48} {2,4,12} {2,4,20,40} {2,4,8,24,48} {2,4,20} {2,4,8,24,72} {3,9,18} {2,4,12,24,48} {3,9,45} {2,4,12,24,72}
Crossrefs
A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
Programs
-
Mathematica
strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]]; Table[Length[fasmax[strses[n]]],{n,100}]
Comments