This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336575 #38 Aug 09 2025 20:51:56 %S A336575 1,1,3,1,3,3,1,3,12,3,1,3,21,57,3,1,3,30,192,300,3,1,3,39,408,2001, %T A336575 1686,3,1,3,48,705,6402,22539,9912,3,1,3,57,1083,14799,109137,267276, %U A336575 60213,3,1,3,66,1542,28488,338430,1964010,3287496,374988,3,1,3,75,2082,48765,817743,8181597,36718680,41556585,2381322,3 %N A336575 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 3^j * binomial(n,j) * binomial(k*n,j-1) for n > 0. %H A336575 Seiichi Manyama, <a href="/A336575/b336575.txt">Antidiagonals n = 0..139, flattened</a> %F A336575 G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (2 + A_k(x)). %F A336575 T(n,k) = Sum_{j=0..n} 2^(n-j) * binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1). %F A336575 T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} 2^j * binomial(k*n+1,j) * binomial((k+1)*n-j,n-j). %F A336575 T(n,k) = (1/n) * Sum_{j=0..n-1} (-2)^j * 3^(n-j) * binomial(n,j) * binomial((k+1)*n-j,n-1-j) for n > 0. - _Seiichi Manyama_, Aug 10 2023 %F A336575 T(n,k) = 3*hypergeom([1-n, -k*n], [2], 3) for n > 0. - _Stefano Spezia_, Aug 09 2025 %e A336575 Square array begins: %e A336575 1, 1, 1, 1, 1, 1, ... %e A336575 3, 3, 3, 3, 3, 3, ... %e A336575 3, 12, 21, 30, 39, 48, ... %e A336575 3, 57, 192, 408, 705, 1083, ... %e A336575 3, 300, 2001, 6402, 14799, 28488, ... %e A336575 3, 1686, 22539, 109137, 338430, 817743, ... %t A336575 T[0, k_] := 1; T[n_, k_] := Sum[3^j * Binomial[n, j] * Binomial[k*n, j - 1], {j, 1, n}]/n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jul 27 2020 *) %o A336575 (PARI) T(n, k) = if(n==0, 1, sum(j=1, n, 3^j*binomial(n, j)*binomial(k*n, j-1))/n); %o A336575 (PARI) T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k*(2+A)); polcoeff(A, n); %o A336575 (PARI) T(n, k) = sum(j=0, n, 2^(n-j)*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1)); %o A336575 (PARI) T(n, k) = sum(j=0, n, 2^j*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1); %Y A336575 Columns k=0-4 give: A122553, A047891, A219535, A336538, A336540. %Y A336575 Main diagonal gives A336578. %Y A336575 Cf. A336534, A336573, A336574. %K A336575 nonn,tabl %O A336575 0,3 %A A336575 _Seiichi Manyama_, Jul 26 2020