cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A338274 Number of decompositions of 2*n >= 4 into an unordered sum of two primes, n - d and n + d, such that d < sqrt(2*n - 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 1, 0, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 2, 2, 0, 2, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1
Offset: 2

Views

Author

Ya-Ping Lu, Oct 19 2020

Keywords

Comments

Indices of the terms with a(n) = 0 are the 1225 numbers in sequence A336585, in which the last term is 1353559. Conjecture: any even number 2*n with n > 1353559 can be written as the sum of two primes, p = m - d and q = m + d, such that d < sqrt(2*m - 1). Note that, for the Goldbach conjecture, the half gap d between the two prime numbers is (q - p)/2 <= m - 2. For the stronger Goldbach conjecture made in A335225, d < m/2. Thus, the conjecture made here is a more stronger version of the Goldbach conjecture.
The record values of a(n) and corresponding n (in parentheses) for a(n) up to 140 are: 1(2), 2(5), 3(105), 4(165), 5(585), 6(630), 7(1575), 8(2685), 10(2730), 11(6870), 12(11970), 13(12390), 14(21540), 15(23925), 16(32280), 17(41745), 19(42315), 20(55965), 21(59340), 22(89985), 23(99330), 24(124950), 25(145740), 26(150150), 27(185955), 30(192045), 31(207900), 34(303765), 35(392595), 38(431655), 46(464100), 47(879060), 50(1080450), 51(1128435), 53(1322685), 55(1340955), 58(1477875), 60(1601985), 61(1909215), 65(1996995), 66(2486715), 68(2513280), 70(2656500), 71(2917530), 74(3366825), 75(3566640), 77(3610530), 79(4037880), 82(4160520), 85(4834830), 90(4868955), 96(6006000), 98(7843290), 101(8303295), 102(8918910), 108(9503340), 113(9725100), 116(11539605), 119(11800635), 120(13311480), 133(13783770), 137(16956225), 140(17402385). Conjecture: values of n at which record values of a(n) (>=2) are achieved are multiples of 5.

Examples

			a(2) = 1 because 2*n = 2 + 2 and d = 0 < sqrt(2*2 - 1);
a(5) = 2 because 2*n = 5 + 5 = 3 + 7 and both d's ( 0 and 2) < sqrt(2*5 - 1);
a(22) = 0 because none of the values of d (9, 15 and 19) for the three Goldbach pairs of 2*22 (13&31, 7&37 and 3&41) is < sqrt(2*22 - 1);
a(105) = 3 because the values of d (2, 4, and 8) for 3 of the 19 Goldbach pairs are < sqrt(2*105 - 1).
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    from math import sqrt
    m = 2
    while m >= 2:
        d = 0
        a = 0
        while d < sqrt(2*m - 1):
            p = m - d
            q = m + d
            if isprime(p) == 1 and isprime(q) == 1:
                a += 1
            d += 1
        print (a)
        m += 1
Showing 1-1 of 1 results.