This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336598 #35 Aug 12 2020 01:35:08 %S A336598 1,4,2,21,18,6,144,156,96,24,1245,1500,1260,600,120,13140,16470,16560, %T A336598 11160,4320,720,164745,207270,231210,194040,108360,35280,5040,2399040, %U A336598 2976120,3507840,3402000,2419200,1149120,322560,40320 %N A336598 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords cross the marked chord. %H A336598 Donovan Young, <a href="/A336598/b336598.txt">Table of n, a(n) for n = 1..9870</a> (Rows 1..140). %H A336598 Donovan Young, <a href="https://arxiv.org/abs/2007.13868">A critical quartet for queuing couples</a>, arXiv:2007.13868 [math.CO], 2020. %F A336598 T(n,k) = n*T(n-1,k) + n*T(n-1,k-1), with T(n,0) = A233481(n) for n > 0. %F A336598 E.g.f.: x/sqrt(1 - 2*x)/(1 - x*(1 + y)). %e A336598 Triangle begins: %e A336598 1; %e A336598 4, 2; %e A336598 21, 18, 6; %e A336598 144, 156, 96, 24; %e A336598 1245, 1500, 1260, 600, 120; %e A336598 ... %e A336598 For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can be either (1,3), and so crossed once by (2,4), or (2,4), and so crossed once by (1,3). Hence T(2,1) = 2. %t A336598 CoefficientList[Normal[Series[x/Sqrt[1-2*x]/(1-x(1+y)),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}] %o A336598 (PARI) %o A336598 T(n)={[Vecrev(p) | p<-Vec(serlaplace(x/sqrt(1 - 2*x + O(x^n))/(1 - x*(1 + y))))]} %o A336598 { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jul 29 2020 %Y A336598 Row sums are n*A001147(n) for n > 0. %Y A336598 First column is A233481(n) for n > 0. %Y A336598 Leading diagonal is A000142(n) for n > 0. %Y A336598 Sub-leading diagonal is n*A000142(n) for n > 1. %Y A336598 Cf. A336599, A336600, A336601. %K A336598 nonn,tabl %O A336598 1,2 %A A336598 _Donovan Young_, Jul 29 2020