This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336599 #20 Aug 11 2020 16:43:31 %S A336599 1,5,1,33,9,3,279,87,39,15,2895,975,495,255,105,35685,12645,6885,4005, %T A336599 2205,945,509985,187425,106785,66465,41265,23625,10395,8294895, %U A336599 3133935,1843695,1198575,795375,513135,301455,135135,151335135,58437855,35213535,23601375,16343775,11263455,7453215,4459455,2027025 %N A336599 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord. %H A336599 Donovan Young, <a href="/A336599/b336599.txt">Table of n, a(n) for n = 1..9870</a> %H A336599 Donovan Young, <a href="https://arxiv.org/abs/2007.13868">A critical quartet for queuing couples</a>, arXiv:2007.13868 [math.CO], 2020. %F A336599 E.g.f.: (sqrt(1 - 2*y*x) - sqrt(1 - 2*x))/(1 - 2*x)/(1 - y). %e A336599 Triangle begins: %e A336599 1; %e A336599 5, 1; %e A336599 33, 9, 3; %e A336599 279, 87, 39, 15; %e A336599 2895, 975, 495, 255, 105; %e A336599 ... %e A336599 For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1. %t A336599 CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y),{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}] %Y A336599 Row sums are n*A001147(n) for n > 0. %Y A336599 Leading diagonal is A001147(n-1) for n > 0. %Y A336599 The first column is A129890(n-1) for n > 0. %Y A336599 The second column is A035101(n+1) for n > 0. %Y A336599 Cf. A336598, A336600, A336601. %K A336599 nonn,tabl %O A336599 1,2 %A A336599 _Donovan Young_, Jul 29 2020