A336600 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords contain the marked chord.
1, 5, 1, 32, 11, 2, 260, 116, 38, 6, 2589, 1344, 594, 174, 24, 30669, 17529, 9294, 3774, 984, 120, 422232, 257487, 153852, 76782, 28272, 6600, 720, 6633360, 4234320, 2746260, 1576980, 726480, 242640, 51120, 5040, 117193185, 77358600, 53170380, 33718500, 18171360, 7693200, 2340720, 448560, 40320
Offset: 1
Examples
Triangle begins: 1; 5, 1; 32, 11, 2; 260, 116, 38, 6; 2589, 1344, 594, 174, 24; ... For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (2,3) and it is contained by one other chord, namely (1,4), hence T(2,1) = 1.
Links
- Donovan Young, Table of n, a(n) for n = 1..9870
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
CoefficientList[Normal[Series[Log[(1-x*(1+y))/(1-2*x)]/(1-y)/Sqrt[1-2*x],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
Formula
E.g.f.: log((1 - x*(1 + y))/(1 - 2*x))/(1 - y)/sqrt(1 - 2*x).