A336607 Numbers of the form x^3 + x^2*y + x*y^2 + y^3, where x and y are positive integers.
4, 15, 32, 40, 65, 85, 108, 120, 156, 175, 203, 256, 259, 272, 320, 369, 400, 405, 477, 500, 520, 580, 585, 671, 680, 715, 803, 820, 864, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1372, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885
Offset: 1
Examples
4=1^3+1^2*1+1*1^2+1^3, 15=1^3+1^2*2+1*2^2+2^3, 32=2^3+2^2*2+2*2^2+2^3, ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A024614.
Programs
-
Maple
N:= 10000: # for terms <= N S:= {}: for x from 1 while (x+1)*(x^2+1) < N do V:= select(`<=`,map(y -> (x+y)*(x^2+y^2), {seq(i,i=1..min(x,(N-x^3)/x^2))}),N); S:= S union V; od: sort(convert(S,list)); # Robert Israel, Sep 21 2020
-
Mathematica
max = 5000; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0; T0 = Table[x^3 + x^2 y + x y^2 + y^3, {x, 1, xm}, {y, x, xm}] // Flatten // Union // Select[#, # <= max &] &; T != T0, xm = 2 xm]; T
Comments