cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336607 Numbers of the form x^3 + x^2*y + x*y^2 + y^3, where x and y are positive integers.

Original entry on oeis.org

4, 15, 32, 40, 65, 85, 108, 120, 156, 175, 203, 256, 259, 272, 320, 369, 400, 405, 477, 500, 520, 580, 585, 671, 680, 715, 803, 820, 864, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1372, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885
Offset: 1

Views

Author

César Eliud Lozada, Jul 27 2020

Keywords

Comments

Numbers of the form (x+y)(x^2+y^2), where x and y are positive integers. - Chai Wah Wu, Aug 08 2020
No terms == 2 (mod 4). - Robert Israel, Sep 21 2020

Examples

			4=1^3+1^2*1+1*1^2+1^3, 15=1^3+1^2*2+1*2^2+2^3, 32=2^3+2^2*2+2*2^2+2^3, ...
		

Crossrefs

Cf. A024614.

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= {}:
    for x from 1 while (x+1)*(x^2+1) < N do
       V:= select(`<=`,map(y -> (x+y)*(x^2+y^2), {seq(i,i=1..min(x,(N-x^3)/x^2))}),N);
       S:= S union V;
    od:
    sort(convert(S,list)); # Robert Israel, Sep 21 2020
  • Mathematica
    max = 5000; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0;
    T0 = Table[x^3 + x^2 y + x y^2 + y^3, {x, 1, xm}, {y, x, xm}] //
         Flatten // Union // Select[#, # <= max &] &; T != T0, xm = 2 xm];
    T