This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336615 #15 Jan 31 2025 04:27:33 %S A336615 2,3,5,7,11,12,13,17,18,19,20,23,28,29,31,37,41,43,44,45,47,48,50,52, %T A336615 53,59,61,63,67,68,71,73,75,76,79,80,83,89,92,97,98,99,101,103,107, %U A336615 109,112,113,116,117,124,127,131,137,139,147,148,149,151,153,157,162 %N A336615 Numbers of the form p * m^2, where p is prime and m > 0 is not divisible by p. %C A336615 Numbers k such that A008833(k) is a unitary divisor of k and A007913(k) = k / A008833(k) is a prime number. %H A336615 Amiram Eldar, <a href="/A336615/b336615.txt">Table of n, a(n) for n = 1..10000</a> %H A336615 Eckford Cohen, <a href="https://doi.org/10.4064/aa-7-4-417-420">Arithmetical notes, IX. On the set of integers representable as a product of a prime and square</a>, Acta Arithmetica, Vol. 7 (1962), pp. 417-420. %F A336615 The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). %t A336615 Select[Range[2, 200], Select[FactorInteger[#][[;;, 2]], OddQ] == {1} &] %o A336615 (Python) %o A336615 from math import isqrt %o A336615 from sympy import primepi, primefactors %o A336615 def A336615(n): %o A336615 def bisection(f,kmin=0,kmax=1): %o A336615 while f(kmax) > kmax: kmax <<= 1 %o A336615 kmin = kmax >> 1 %o A336615 while kmax-kmin > 1: %o A336615 kmid = kmax+kmin>>1 %o A336615 if f(kmid) <= kmid: %o A336615 kmax = kmid %o A336615 else: %o A336615 kmin = kmid %o A336615 return kmax %o A336615 def f(x): return n+x-sum(primepi(m:=x//y**2)-sum(1 for p in primefactors(y) if p<=m) for y in range(1,isqrt(x)+1)) %o A336615 return bisection(f,n,n) # _Chai Wah Wu_, Jan 30 2025 %Y A336615 Intersection of A229125 and A335275. %Y A336615 Cf. A007913, A008833, A013661. %Y A336615 Subsequences: A000040, A054753, A179643. %K A336615 nonn %O A336615 1,1 %A A336615 _Amiram Eldar_, Jul 27 2020