This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336620 #13 Aug 06 2020 09:27:46 %S A336620 3,5,7,9,11,13,17,19,21,23,25,27,29,31,37,39,41,42,43,47,49,53,57,59, %T A336620 61,63,65,67,71,73,78,79,81,83,87,89,91,97,101,103,105,107,109,111, %U A336620 113,114,115,117,121,125,126,127,129,130,131,133,137,139,147,149 %N A336620 Numbers that are not a product of elements of A304711. %C A336620 A304711 lists numbers whose distinct prime indices are pairwise coprime. %C A336620 The first term divisible by 4 is a(421) = 1092. %H A336620 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A336620 The sequence of terms together with their prime indices begins: %e A336620 3: {2} 39: {2,6} 78: {1,2,6} %e A336620 5: {3} 41: {13} 79: {22} %e A336620 7: {4} 42: {1,2,4} 81: {2,2,2,2} %e A336620 9: {2,2} 43: {14} 83: {23} %e A336620 11: {5} 47: {15} 87: {2,10} %e A336620 13: {6} 49: {4,4} 89: {24} %e A336620 17: {7} 53: {16} 91: {4,6} %e A336620 19: {8} 57: {2,8} 97: {25} %e A336620 21: {2,4} 59: {17} 101: {26} %e A336620 23: {9} 61: {18} 103: {27} %e A336620 25: {3,3} 63: {2,2,4} 105: {2,3,4} %e A336620 27: {2,2,2} 65: {3,6} 107: {28} %e A336620 29: {10} 67: {19} 109: {29} %e A336620 31: {11} 71: {20} 111: {2,12} %e A336620 37: {12} 73: {21} 113: {30} %t A336620 nn=100; %t A336620 dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]; %t A336620 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A336620 Select[Range[nn],facsusing[dat,#]=={}&] %Y A336620 A336426 is the version for superprimorials, with complement A181818. %Y A336620 A336497 is the version for superfactorials, with complement A336496. %Y A336620 A336735 is the complement. %Y A336620 A000837 counts relatively prime partitions, with strict case A007360. %Y A336620 A001055 counts factorizations. %Y A336620 A302696 lists numbers with coprime prime indices. %Y A336620 A304711 lists numbers with coprime distinct prime indices. %Y A336620 Cf. A007916, A112798, A302569, A327516, A333228, A335238, A335239, A335240, A335241, A336424, A336568, A336736. %K A336620 nonn %O A336620 1,1 %A A336620 _Gus Wiseman_, Aug 02 2020