This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336624 #57 Jan 15 2024 18:22:10 %S A336624 0,15,66,17391,76245,20069280,87986745,23159931810,101536627566, %T A336624 26726541239541,117173180224500,30842405430498585,135217748442445515, %U A336624 35592109140254127630,156041164529401899891,41073263105447832786516,180071368649181350028780,47398510031577658781511915 %N A336624 Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number. %C A336624 The triangular numbers T(t) that are one-eighth of other triangular numbers T(u) : T(t)=T(u)/8. The t's are in A336623, the T(u)'s are in A336626 and the u's are in A336625. %C A336624 Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z. %H A336624 Vladimir Pletser, <a href="/A336624/b336624.txt">Table of n, a(n) for n = 0..650</a> %H A336624 Vladimir Pletser, <a href="https://arxiv.org/abs/2101.00998">Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers</a>, arXiv:2101.00998 [math.NT], 2021. %H A336624 Vladimir Pletser, <a href="https://arxiv.org/abs/2102.12392">Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers</a>, arXiv:2102.12392 [math.GM], 2021. %H A336624 Vladimir Pletser, <a href="https://arxiv.org/abs/2102.13494">Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations</a>, arXiv:2102.13494 [math.NT], 2021. %H A336624 Vladimir Pletser, <a href="https://www.researchgate.net/profile/Vladimir-Pletser/publication/359808848_USING_PELL_EQUATION_SOLUTIONS_TO_FIND_ALL_TRIANGULAR_NUMBERS_MULTIPLE_OF_OTHER_TRIANGULAR_NUMBERS/">Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers</a>, 2022. %H A336624 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1154,-1154,-1,1). %F A336624 a(n) = 1154*a(n-2) - a(n-4) + 81, for n>=2 with a(1)=15, a(0)=0, a(-1)=0, a(-2)=15. %F A336624 a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(2)=66, a(1)=15, a(0)=0, a(-1)=0, a(-2)=15. %F A336624 a(n) = b(n)*(b(n)+1)/2 where b(n) is A336623(n). %F A336624 G.f.: 3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)). - _Colin Barker_, Aug 08 2020 %F A336624 a(n) = ((sqrt(2) + 1)^(4*n + 2) * (11 - 6*(-1)^n*sqrt(2)) + (sqrt(2) - 1)^(4*n + 2) * (11 + 6*(-1)^n*sqrt(2)) - 18)/256. - _Vaclav Kotesovec_, Sep 08 2020 %F A336624 From _Vladimir Pletser_, Feb 21 2021: (Start) %F A336624 a(n) = ((11 - 6*sqrt(2))*(1 + sqrt(2))^(4n + 2) + (11 + 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for even n. %F A336624 a(n) = ((11 + 6*sqrt(2))*(1 + sqrt(2) )^(4n + 2) + (11 - 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for odd n. (End) %F A336624 128*a(n) = -9+33*A077420(n)-24*(-1)^n*A046176(n+1). - _R. J. Mathar_, May 05 2023 %e A336624 a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular. %e A336624 a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66; %e A336624 a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc. %p A336624 f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; # %t A336624 LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* _Amiram Eldar_, Aug 08 2020 *) %t A336624 FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* _Vaclav Kotesovec_, Sep 08 2020 *) %t A336624 Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* _Harvey P. Dale_, Jan 15 2024 *) %o A336624 (PARI) concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ _Colin Barker_, Aug 08 2020 %Y A336624 Subsequence of A000217. %Y A336624 Cf. A336623, A336626, A336625. %Y A336624 Cf. A053141, A001652, A075528, A029549, A061278, A001571, A076139, A076140, A077259, A077262, A077260, A077261, A077288, A077291, A077289, A077290, A077398, A077401, A077399, A077400. %K A336624 easy,nonn %O A336624 0,2 %A A336624 _Vladimir Pletser_, Aug 07 2020