cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336625 Indices of triangular numbers that are eight times other triangular numbers.

This page as a plain text file.
%I A336625 #60 Oct 07 2022 10:13:02
%S A336625 0,15,32,527,1104,17919,37520,608735,1274592,20679087,43298624,
%T A336625 702480239,1470878640,23863649055,49966575152,810661587647,
%U A336625 1697392676544,27538630330959,57661384427360,935502769664975,1958789677853712,31779555538278207,66541187662598864,1079569385531794079,2260441590850507680
%N A336625 Indices of triangular numbers that are eight times other triangular numbers.
%C A336625 Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 8*(b(n)^2 + b(n)) or T(a(n)) = 8*T(b(n)) where T(x) is the triangular number of x. The T(a)'s are in A336626, the T(b)'s are in A336624 and the b's are in A336623.
%C A336625 Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.
%H A336625 Vladimir Pletser, <a href="/A336625/b336625.txt">Table of n, a(n) for n = 1..1000</a>
%H A336625 Vladimir Pletser, <a href="https://arxiv.org/abs/2101.00998">Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers</a>, arXiv:2101.00998 [math.NT], 2021.
%H A336625 Vladimir Pletser, <a href="https://arxiv.org/abs/2102.12392">Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers</a>, arXiv:2102.12392 [math.GM], 2021.
%H A336625 Vladimir Pletser, <a href="https://www.researchgate.net/profile/Vladimir-Pletser/publication/359808848_USING_PELL_EQUATION_SOLUTIONS_TO_FIND_ALL_TRIANGULAR_NUMBERS_MULTIPLE_OF_OTHER_TRIANGULAR_NUMBERS/">Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers</a>, 2022.
%H A336625 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,34,-34,-1,1).
%F A336625 a(n) = 34*a(n-2) - a(n-4) + 16, for n>=2 with a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
%F A336625 a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=32, a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
%F A336625 a(n) = (-1 + sqrt(8*b(n) + 1))/2, where b(n) is A336626(n).
%F A336625 G.f.: x^2*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - _Colin Barker_, Aug 14 2020
%F A336625 a(n) = ((sqrt(2) + 1)^(2*n+1) * (3 - sqrt(2)*(-1)^n) - (sqrt(2) - 1)^(2*n+1) * (3 + sqrt(2)*(-1)^n) - 2)/4. - _Vaclav Kotesovec_, Sep 08 2020
%F A336625 From _Vladimir Pletser_, Feb 21 2021: (Start)
%F A336625 a(n) = ((3 - sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 + sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for even n.
%F A336625 a(n) = ((3 + sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 - sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for odd n. (End)
%e A336625 a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
%e A336625 a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
%p A336625 f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
%t A336625 LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* _Amiram Eldar_, Aug 18 2020 *)
%t A336625 FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* _Vaclav Kotesovec_, Sep 08 2020 *)
%o A336625 (PARI) concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ _Colin Barker_, Aug 14 2020
%Y A336625 Cf. A336623, A336624, A336626, A166477 (at n=8).
%Y A336625 Cf. A053141, A001652, A075528, A029549, A061278, A001571, A076139, A076140, A077259, A077262, A077260, A077261, A077288, A077291, A077289, A077290, A077398, A077401, A077399, A077400, A000217.
%K A336625 easy,nonn
%O A336625 1,2
%A A336625 _Vladimir Pletser_, Aug 13 2020