This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336627 #19 Oct 18 2022 14:57:37 %S A336627 1,2,4,8,11,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88, %T A336627 92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156, %U A336627 160,164,168,172,176,180,184,188,192,196,200,204,208,212,216,220,224 %N A336627 Coordination sequence for the Manhattan lattice. %C A336627 In the Manhattan lattice, N-S streets run alternately N and S, and E-W streets run alternately E and W. - _N. J. A. Sloane_, Jul 29 2020 %H A336627 Sean A. Irvine, <a href="/A336627/a336627.png">Illustration of a(0) to a(7)</a> %H A336627 N. J. A. Sloane, <a href="/A336627/a336627_1.png">Crude drawing of initial layers showing paths of length 6 from origin</a> (looking North-West). The presence of three points at distance 4 from the origin on the line of symmetry explains why a(4) is odd! %H A336627 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A336627 G.f.: (1+x^2) * (1+2*x^3-x^4) / (1-x)^2. %F A336627 a(n) = 4*(n-1), n >= 5. %t A336627 CoefficientList[Series[(1+x^2)(1+2x^3-x^4)/(1-x)^2,{x,0,80}],x] (* or *) LinearRecurrence[{2,-1},{1,2,4,8,11,16,20},80] (* _Harvey P. Dale_, Dec 28 2021 *) %o A336627 (PARI) a(n)=if(n>4, 4*n-4, min(2^n, 11)) \\ _Charles R Greathouse IV_, Oct 18 2022 %Y A336627 Cf. A008574 (square lattice), A117633 (self-avoiding walks). %K A336627 nonn,nice,easy %O A336627 0,2 %A A336627 _Sean A. Irvine_, Jul 28 2020