This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336653 #5 Jul 29 2020 18:48:27 %S A336653 -1,1,3,20,160,1727,22341,337947,5799881,111180832,2352448424, %T A336653 54449597409,1368516031855,37118127188225,1080644471447419, %U A336653 33614180067524196,1112586937337720904,39043623554061199807,1448021297870473796645,56592256120004219495755,2324706946641972649074513 %N A336653 First differences of A271215. %C A336653 a(n) is the number of epsilon-paths of the n-cube for n>=2. %H A336653 Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, <a href="https://arxiv.org/abs/2007.13266">Unfolding cubes: nets, packings, partitions, chords</a>, arXiv:2007.13266 [math.CO], 2020. See Table 1 p. 15. %F A336653 a(n) = A271215(n) - A271215(n-1). %o A336653 (PARI) f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806 %o A336653 lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); my(w=vector(nn-1, n, (va[n] + abs(f(n-1)))/2)); vector(#w-1, k, w[k+1] - w[k]);} \\ _Michel Marcus_, Jul 28 2020 %Y A336653 Cf. A000806, A271215. %K A336653 sign %O A336653 1,3 %A A336653 _Michel Marcus_, Jul 28 2020