cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336667 Triangular array read by rows. T(n,k) is the number of closed walks of length 2n along the edges of a cube based at vertex v that return to v exactly k times, n>=0, 0<=k<=n.

This page as a plain text file.
%I A336667 #12 Aug 03 2020 02:59:59
%S A336667 1,0,3,0,12,9,0,84,72,27,0,588,648,324,81,0,4116,5544,3564,1296,243,0,
%T A336667 28812,45864,35748,16848,4860,729,0,201684,370440,337932,193104,72900,
%U A336667 17496,2187
%N A336667 Triangular array read by rows. T(n,k) is the number of closed walks of length 2n along the edges of a cube based at vertex v that return to v exactly k times, n>=0, 0<=k<=n.
%H A336667 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; page 340.
%F A336667 O.g.f.: (1 - 7*x^2)/(1 - 7*x^2 - 3*y*x^2 + 9*y*x^4).
%e A336667 Triangle T(n,k) begins:
%e A336667   1;
%e A336667   0,   3;
%e A336667   0,  12,   9;
%e A336667   0,  84,  72,  27;
%e A336667   0, 588, 648, 324, 81;
%e A336667   ...
%t A336667 Table[nn = n; CoefficientList[Series[(1 - 7 z^2)/(1 - (7 + 3 u) z^2 + 9 u z^4), {z, 0, nn}], {z,u}][[-1]], {n, 0, 15, 2}] // Grid
%Y A336667 Cf. A054879 (row sums), A328778 (column k=1).
%K A336667 nonn,tabl,easy
%O A336667 0,3
%A A336667 _Geoffrey Critzer_, Jul 29 2020